Jens Christensen

Back to Directory

Jens Christensen

Associate Professor of Mathematics

Department/Office Information

216 McGregory Hall


BS, University of Copenhagen, 2003
MS, Louisiana State University, 2006 and University of Copenhagen 2003
PhD, Louisiana State University, 2009

Research Associate at the Norbert Wiener Center, University of Maryland, College Park, 2009-2011
Norbert Wiener Assistant Professor at Tufts University 2011-2013

Harmonic analysis, wavelets, function spaces, sampling theory, mean value operators

Analysis, calculus

  1. The Uncertainty Principle for Operators Determined by Lie Groups , J. Fourier Anal. Appl. 10 (2004), no. 5, 541--544.
  2. An uncertainty principle related to the Euclidean motion group , w. H. Schlichtkrull, Math. Proc. R. Ir. Acad. 104A (2004), no. 2, 249--252 (electronic)
  3. Examples of Coorbit Spaces for Dual Pairs , w. G. Olafsson, Acta Appl. Math. 107 (2009), no. 1-3, 25--48.
  4. Coorbit Spaces for Dual Pairs, w. G. Olafsson, Appl. Comp. Harm. Anal. Vol. 31 Issue 2 (2011), 303-324
  5. Sampling in reproducing kernel Banach spaces on Lie groups, Journal of Approximation Theory, Vol. 164 Issue 1 (2012), 179-203
  6. Sampling in spaces of bandlimited functions on commutative spaces, w. G. Olafsson, Chapter in Applied and Numerical Harmonic Analysis book Excursions in Harmonic Analysis, Volume 1.
  7. Coorbit description and atomic decomposition of Besov spaces, w. A. Mayeli and G. Olafsson, Numer. Funct. Anal. Optim., Vol. 33, Issue 7-9 (2012), 847-871
  8. Atomic decompositions of Besov spaces related to symmetric cones, Contemporary Mathematics, Vol. 598 (2013), 97-110
  9. Multi-window Gabor frames in amalgam spaces, w. R. Balan, I.A. Krishtal, K. Okoudjou and J.L. Romero, Math. Res. Lett., Vol. 21, Number 1 (2014), 55-69
  10. Sampling in Euclidean and Non-Euclidean Domains: A Unified Approach, w. S. Casey, Chapter in Applied and Numerical Harmonic Analysis book series Sampling Theory, a Renaissance. Birkhauser, Boston (2015).
  11. New atomic decompositions for Bergman spaces on the unit ball, w. K. Grochenig and G. Olafsson, Indiana Univ. Math. J., Vol. 66, Issue 1 (2017), 205-235
  12. Surjectivity of mean value operators on noncompact symmetric spaces, w. F. Gonzalez and T. Kakehi in J. Funct. Anal. 272 (2017), no. 9, 3610-3646.
  13. Atomic decompositions of mixed norm Bergman spaces on tube type domains , Contemp. Math., 714 (2018), 77-85.
  14. Coorbits for projective representations with an application to Bergman spaces w. A. Darweesh and G. Olafsson, Monatsh. Math., Vol 189 (2019), no. 3, 385-420.
  15. New atomic decompositions of Bergman spaces on bounded symmetric domains w. G. Olafsson, J. Geom. Anal., Vol 31 (2021), no. 7, 7513-7537.
  16. Uncertainty Principles and Differential Operators on the Weighted Bergman Space w. Christopher Benjamin Deng, Complex Analysis and Operator Theory, Vol 17 (2023).
  17. The Snapshot Problem for the Wave Equation w. Fulton Gonzalez, Tomoyuki Kakehi and Jue Wang. Accepted by Advances in Mathematics