Gongfang Hu

Back to Directory
ghu

Gongfang Hu

Assistant Professor of Chemistry

Department/Office Information

Chemistry
200 Wynn Hall
  • T 12:40pm - 1:40pm (200 Wynn Hall)
  • R 11:20am - 12:20pm (200 Wynn Hall)
  • F 1:20pm - 2:20pm (200 Wynn Hall)

Our lab is a place where "molecular architects" come together to design molecules for catalytic purposes. We don't just aim to create effective catalysts, but we strive to understand why they work the way they do, whether through successful attempts or unexpected results. We are constantly learning and revising our strategies, striving to "think like molecules."

One of our primary focuses is on electrocatalysis, a field that explores how electricity can be used as a sustainable source of energy or redox equivalents in chemical catalysis. By harnessing renewable energy sources like solar, wind, and water, we can generate electricity that is more environmentally friendly and leaves behind minimal chemical waste. Through our research in electrocatalysis, we hope to make fundamental progress towards a more sustainable future.

Our lab is always exploring new avenues in molecular electrocatalysis, including developing new catalysts, discovering new reactions, and exploring new electrochemical methodologies. We are especially passionate about tackling the challenging yet crucial chemical reactions that are essential for chemical sustainability, such as water oxidation, carbon dioxide to reduction, and organic synthesis using electricity. Our current focus is on exploring the less-studied potential of main-group metal elements in these electrocatalytic reactions. By designing and synthesizing cost-effective new compounds, we aim to push the boundaries of what electrocatalysis can achieve.

As a student in our lab, you will gain invaluable knowledge across a broad spectrum of fields, including renewable energy sciences, chemical catalysis, synthesis, and electrochemistry. You will also learn practical skills such as organic and inorganic synthesis under normal or air-free conditions, molecular structural determination, electrochemical techniques, electrode preparation, and catalytic analysis. We welcome undergraduates who are passionate about these research directions to discuss possible research opportunities with us. We are excited to see what we can achieve together!

  • Postdoctoral Associate (w. Gary Brudvig and Bob Crabtree), Yale University, New Haven, CT, USA, 2018–2022
  • PhD in Chemistry (w. Jon Lindsey), North Carolina State University, Raleigh, NC, USA, 2013–2018
  • BS in Chemistry (w. Ping Lu), Zhejiang University, Hangzhou, Zhejiang, China, 2009–2013

CHEM 263 Organic Chemistry I and Lab

CHEM 264 Organic Chemistry II and Lab

CHEM 415 Organometallic Chemistry

CHEM 461 Organic Reaction Mechanism

CHEM 481 Advanced Chemistry Research

CHEM 482 Advance Chemistry Research

Updated List of Publications on Google Scholar

23.  Kwon, G*; Kisslinger, K.; Hwang, S.; Wright, G.; Layne, B.; Zhong, H.; Pattammattel, A.; Lynch, J.; Kim, J.; Hu, G.; Brudvig, G. W.; Lee, W.-I.; Nam, C.-Y. "Multielectrode Electrochemical Cell for in situ Structural Characterization of Amorphous Thin-Film Catalysts Using High-Energy X-Ray Scattering," J. Appl. Crystallogr. 2023, 56, in press. DOI:10.1107/S1600576723006933.

Supervised Publications Prior to Colgate

22.  Liu, H.-Y.; Lant, H.; Troiano, J. T.; Hu, G.; Mercado, B. Q.; Crabtree, R. H.*; Brudvig, G. W.* “Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex,” J. Am. Chem. Soc. 2022, 144, 8449–8453.

21.   Bozal-Ginesta, C.; Rao, R.; Mesa, C. A.; Wang, Y.; Zhao, Y.; Hu, G.; Antón-García, D.; Stephens, I.; Reisner, E.; Brudvig, G. W.; Wang, D.; Durrant, J.* “Spectroelectrochemistry of Water Oxidation Kinetics in Molecular versus Heterogeneous Oxide Iridium Electrocatalysts,” J. Am. Chem. Soc. 2022, 144, 8454–8459.

20.   Hu, G.; Troiano, J. T.; Tayvah, U. T.; Sharninghausen, L. S.; Sinha, S. B.; Shopov, D. Y.; Crabtree, R. H.*; Brudvig, G. W.* “Accessing Molecular Dimeric Ir Water-Oxidation Catalysts from Coordination Precursors”, Inorg. Chem. 2021, 60, 14349–14356.

19.  Kwon, G.*; Chang, S. H.*; Eun, H. J.; Lee, K. J.; Kim, J.-K.; Cho, B.-G.; Koo, T. Y.; Kim, B. J.; Kim, C.; Lee, J. H.; Bak, S.-M.; Beyer, K. A.; Zhong, H.; Koch, R.; Hwang, S.; Hu, G.; Brudvig, G. W.; Tiede, D. M.; Kim, J.* “Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts,” ACS Catal. 2021, 11, 10084–10094.

18. Pattengale, B.; Neu, J.; Tada, A.; Hu, G.; Karpovich, C. J.; Brudvig, G. W.* “Cation-Exchanged Conductive Mn2DSBDC Metal-Organic Frameworks: Synthesis, Structure, and THz Conductivity,” Polyhedron 2021, 203, 115182.

17.  Hu, G.; Crabtree, R. H.*; Brudvig, G. W.* “Organometallic Complexes as Preferred Precursors to Form Molecular Ir(Pyalk) Coordination Complexes for Catalysis of Oxygen Evolution,” Inorg. Chem. Acta 2021, 526, 120507.

16.  Liu, R.; Liu, S.; Hu, G.; Lindsey, J. S.* “Aqueous Solubilization of Hydrophobic Tetrapyrrole Macrocycles by Attachment to an Amphiphilic Single-Chain Nanoparticle (SCNP),” New J. Chem. 2020, 44, 21293–21308.

15.  Wu, Y.#; Hu, G.#; Brudvig, G. W.*; Wang, H.* “Heterogeneous Nature of Electrocatalytic CO/CO2 Reduction by Cobalt Phthalocyanines,” ChemSusChem 2020, 13, 6296–6299. (# indicates co-first authorship)

14.  Troiano, J. L.; Hu, G.; Crabtree, R. H.*; Brudvig, G. W.* “Diazo Coupling for Surface Attachment of Small Molecules to TiO2 Nanoparticles,” Chem. Commun. 2020, 56, 9340–9343.

13.  Hu, G.#; Jiang, J.#; Kelly, H. R.; Matula, A. J.; Wu, Y.; Romano, N.; Mercado, B. Q.; Wang, H.*; Batista, V. S.; Crabtree, R. H.; Brudvig, G. W.* “Surprisingly Big Linker-Dependence of Activity and Selectivity in CO2 Reduction by an Iridium(I) Pincer Complex,” Chem. Commun. 2020, 56, 9126–9129. (# indicates co-first authorship)

12. Pattengale, B.; Neu, J.; Ostresh, S.; Hu, G.; Spies, J. A.; Okabe, R.; Brudvig, G. W.*; Schmuttenmaer, C. A.* “Metal–Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy,” J. Am. Chem. Soc. 2019, 141, 9793–9797.

11.  Lee, S. H.#; Matula, A. J.#; Hu, G.; Troiano, J. L.; Karpovich, C. J.; Crabtree, R. H.*; Batista, V. S.*; Brudvig, G. W.* “Strongly Coupled Phenazine-Porphyrin Dyads: Light Harvesting Molecular Assemblies with Broad Absorption Coverage,” ACS Appl. Mater. Interfaces 2019, 11, 8000–8008. (# indicates co-first authorship)

10.  Hu, G.; Kang, H. S.; Mandal, A. K.; Roy, A.; Kirmaier, C.; Bocian, D. F.*; Holten, D.*; Lindsey, J. S.* “Synthesis of Arrays Containing Porphyrin, Chlorin, and Perylene-imide Constituents for Panchromatic Light-Harvesting and Charge Separation,” RSC Adv. 2018, 8, 23854–23874.

9.  Taniguchi, M.; Hu, G.; Liu, R.; Du, H.; Lindsey, J. S.* “Red and Near-Infrared Fluorophores Inspired by Chlorophylls. Consideration of Practical Brightness in Multicolor Flow Cytometry and Biomedical Sciences,” Proc. S.P.I.E. 2018, Vol. 10508, 1050806.

8.  Mandal, A. K.; Diers, J. R.; Niedzwiedzki, D. M.; Hu, G.; Liu, R.; Alexy, E. J.; Lindsey, J. S.*; Bocian, D. F.*; Holten, D.* “Tailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole–Chromophore (Bodipy, Rylene) Arrays. The Interplay of Orbital Mixing and Configuration Interaction,” J. Am. Chem. Soc. 2017, 139, 17547–17564.

7.  Zhang, S.; Reddy, M. N.; Mass, O.; Kim, H.-J.; Hu, G.; Lindsey, J. S.* “Synthesis of Tailored Hydrodipyrrins and Their Examination in Directed Routes to Bacteriochlorins and Tetradehydrocorrins,” New J. Chem. 2017, 41, 11170–11189.

6.  Hu, G.#; Amanpour, A.#; Alexy, E. J.; Mandal, A. K.; Kang, H. S.; Yuen, J. M.; Diers, J. R.; Bocian, D. F.*; Lindsey, J. S.*; Holten, D.* “Tuning the Electronic Structure and Properties of Perylene–Porphyrin–Perylene Panchromatic Absorbers,” J. Phys. Chem. A 2016, 120, 7434–7450. (# indicates co-first authorship)

5.  Hu, G.; Liu, R.; Alexy, E. J.; Mandal, A. K.; Bocian, D. F.*; Holten, D.*; Lindsey, J. S.* “Panchromatic Chromophore–Tetrapyrrole Light-Harvesting Arrays Constructed from Bodipy, Perylene, Terrylene, Porphyrin, Chlorin, and Bacteriochlorin Building Blocks,” New J. Chem. 2016, 40, 8032–8052.

4.  Hu, X.; Hu, G.; Crawford, K.; Gorman, C. B. “Comparison of the Growth and Degradation of Poly(glycolic acid) and Poly(e-caprolactone) Brushes,” J. Poly. Sci. Part A: Poly. Chem. 2013, 51, 4643–4649.

3.  Li, J.; Hu, G.; Wang, N.; Hu, T.; Wen, Q.; Lu, P.*; Wang, Y.* “Oligo(3,6-phenanthrene ethynylenes): Synthesis, Characterization, and Photoluminescence,” J. Org. Chem. 2013, 78, 3001–3008.

2.  Li, J.; Hu, G.; Li, X.; Hu, B.; Wang, N.; Lu, P.*; Wang, Y.* “9,11,12,14-Tetraaryldibenzo[f,h]imidazo[1,2-b]isoquinolines and Their Emission Responses to Solvent Polarity, Acidity, and Nitroarenes,” Eur. J. Org. Chem. 2013, 7320–7327.

1.  Li, J.; Hu, B.; Hu, G.; Li, X.; Lu, P.*; Wang, Y.. “An Efficient Synthesis of Heptaaryldipyrromethenes from Tetraarylcyclopentadienones and Ammonium Acetate and Their Extension of the Corresponding BODIPYs,” Org. Biomol. Chem. 2012, 10, 8848–8859.