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Geometric phase of optical rotators
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We describe the rotation of images by means of optical beam steering with use of the concept of geometric
phase. The discussion is concentrated on systems composed of discrete reflections but can be generalized to
refractive steering systems. Geometric phase reduces the analysis of image rotation to simple geometric con-

structions and the calculation of areas on a sphere.

The analysis also applies to the rotation of linear polar-

ization of the light with ideal mirrors. © 1999 Optical Society of America [S0740-3232(99)01008-X]

OCIS codes: 350.1370, 220.0220, 080.2740, 110.2960.

1. INTRODUCTION

Reflection of images is one of the oldest problems studied
in classical optics. Currently a large number of mirror
and prism systems are available for the manipulation of
images.”? Simple graphical constructions are sufficient
for understanding the operation of systems in which the
incoming and outgoing light directions are parallel or or-
thogonal. For other, more general cases one has to resort
to matrix methods to find the properties (e.g., orientation)
of the final image.? Despite the level of maturity of this
topic, in recent years the application of differential geom-
etry concepts to physical systems has brought new light to
this problem, among many others. The topic of this pa-
per is to present the application of this new concept of
geometric phase to the design and analysis of optical ro-
tators. This new method reduces the analysis to a geo-
metrical construction, for which computation and visual-
ization are much simpler than is the case with other
analytical methods. An interesting aspect of this appli-
cation is that the concepts of geometric phase apply to the
polarization of the light as well as to images.

Geometric phase was first introduced by Berry in quan-
tum systems.* The concept had a profound effect, be-
cause it highlighted a serious oversight in quantum me-
chanics: When a system undergoes cyclic changes in
parameter space, it acquires a nonintegrable phase (geo-
metric phase), also known as Berry’s phase. The mani-
festation of geometric phase in optics, in the context of
quantum mechanics, was first investigated by Chiao and
co-workers.® Its presence in image rotation was pro-
posed by Segev et al.® but was not developed explicitly for
application to imaging systems. Another important
manifestation in optics, known about much earlier and
now referred to as the Pancharatnam phase, is the phase
that the light acquires after undergoing changes in its po-
larization state.”® Although the geometric phase was
initially believed to be a purely quantum phenomenon, its
strong presence in classical mechanics is now widely ac-
cepted. Likewise, initial restrictions of adiabaticity® and
the requirement of a closed path have been relaxed.!®
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2. GEOMETRIC PHASE OF COILED OPTICS

The origin of the geometric phase can best be understood
in terms of differential geometry. A geometric phase is a
consequence of the parallel transport in a curved topol-
ogy. This topology is defined by the parameters of the
system. In the case of coiled optics, where the light fol-
lows a three-dimensional path, the parameters of the sys-
tem are the coordinates of the propagation vector. In
systems with n mirrors, the helicity vector, rather than
the propagation vector, defines the state of the system.!!
This is because the helicity accounts for the inversion in-
troduced by each mirror reflection, hereafter called mirror
inversion. The helicity vector after the nth reflection is
defined as

kn, = (_l)nkny (1)

where k, is the propagation vector after the nth reflec-
tion. If the helicity vector of the light is mapped onto a
unit sphere, as the light follows its path through the im-
aging system the point on the sphere representing the he-
licity vector describes a curve, C, on the sphere. In the
case of discrete reflections by mirrors, C is formed by con-
necting with geodesics the discrete positions of the helici-
ties mapped onto the sphere. Since the image plane is
perpendicular to the helicity vector (i.e., is tangent to the
sphere), a three-dimensional light path will parallel
transport the image plane along C and therefore produce
a rotation of the image. Differential geometry provides
the proper formalism for the description of this rotation
by means of the angle accrued by the tangent to C along
the path.!»1® When C is closed, the angle can be simply
obtained, with the Gauss-Bonnet theorem as the area en-
closed by C.!*1* This area is also equivalent to the solid
angle described by the helicity vector in configuration
space. A geometric phase also exists in the case of open
curves, and a “closing” geodesic allows the application of
the Gauss—Bonnet theorem.!? However, care should be
taken in defining a way to compare input and output im-
ages, as will be shown below.
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The new simplification that geometric phase brings to
the analysis of optical rotation is this reduction of the im-
age rotation to the calculation of a spherical area in the
unit helicity-vector sphere. In the following sections, we
will discuss the application of the geometric-phase
method to reflective optical rotators. The paper is di-
vided into different cases, depending on whether the
number of reflections is even or odd and on whether C is
closed or not. The notation used is the following: k; de-
notes the helicity vector after the ith steering of the opti-
cal beam, with Kk, representing the initial helicity. The
final helicity is denoted in a general way by k;. The sub-
indexes for the propagation vector follow the same con-
vention.

The discussions in this article can be generalized to re-
fractive systems as well. In the case of optical steering
by refraction, the relation between the helicity and propa-
gation vectors (parallel or antiparallel) remains the same
after the steering, as opposed to the case of the reflective
steering of images, in which the relation changes after
each reflection. Thus for purely refractive systems such
as coherent image bundles, the propagation vector is suf-
ficient to describe the geometric phase of the system.

3. CASE 1: EVEN NUMBER OF
REFLECTIONS

A. Case 1(al: kf~= Tq,

Case 1(a), k¢ = k;, is the simplest but most important
case. The input and output beams are parallel, and the
final image is not mirror inverted. Here the geometric
phase is manifested in its purest form: The image rota-
tion depends only on the path of the light. That is, it is
independent of the orientation of the incident image rela-
tive to the optical system. This type of optical rotator is
also referred to as a pure rotator.

Consider the system shown in Fig. 1(a). The unit-
norm propagation vectors for this geometry are k,
= (0,1,0), kl = (1,0,0), kz = (0,0,1), k3
= (—sin 6, —cos §,0), and k; = k,. The corresponding k
sphere is shown in Fig. 1(b). The points in the sphere
corresponding to the mapping of the helicity vector k, are
denoted for simplicity by fi. From Fig. 1(b) it can be seen
that the spherical area enclosed by C (or the solid angle ()
described by k) is given by 90° + 6. We verified this re-
lationship experimentally by sending the light from a
slide projector through the optical system described sche-
matically by Fig. 1(a). The reflectors were 4 in X 4 in
frontsurface Al mirrors aligned into position with inter-
secting He—Ne and red-diode laser beams with a diameter
of ~1 mm. The rotation angle ¢ was measured with a
protractor directly on a screen, where the overlapping
original and rotated images of a pattern were projected.
Figure 2 shows a comparison of ¢ as a function of the
computed spherical area. The squares correspond to the
geometry of Fig. 1(a). The triangle corresponds to a mea-
surement where k; was off the horizontal plane: k;
= (3,4,2)/\29. The errors for each data point are of the
order of 1° owing to the uncertainties in the position of
the mirrors, which were caused by the finite width of the
laser beams used to align them.

E. J. Galvez and C. D. Holmes

The sense of the rotation of the image was consistent
with the sense of the trajectory through C as seen from
the center of the sphere. In our convention, positive
signs correspond to clockwise rotations. From this, one
would expect that a curve C in the form of a figure eight
would give a geometric phase that is the difference in the
areas of the two figure-eight lobes. Indeed, the circle in
Fig. 2 corresponds to the case in which ky = (0,1,0), k;
= (5,0,3)/34, ky = (0,0,1), kg = (3,4,0)/5, and k,
= ky. The optical apparatus and the spherical con-
struction are shown in Fig. 3. The measured rotation
was —22.3°. The calculated difference in the two areas is
—22.2°, and their sum is 84.1°.

It is straightforward to verify that the Porro, Abbe, Ab-
be’s modification of Porro, Leman, Carl-Zeiss, Hensolt,
and Goerz prism systems,'® which fall under this cat-
egory, rotate the image by 180°. We shall discuss explic-
itly two interesting variations of popular systems, which
we call the variable-angle Porro and consecutive Dove
systems. Both are important because the angle of rota-
tion of the image is variable. The first system consists of
two right-angle prisms arranged as in the Porro system,
but the angle between the two prisms is variable [see Fig.
4(a)]. In the first prism the k vector describes a great
semicircle, and in the second one it describes another
great semicircle (in general, in a different plane) that
closes C. The planes of the two great semicircles form
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Fig. 1. System to test the case of cyclic geometric phase with an
even number of reflections: (a) experimental arrangement of
mirrors with ky, = (0,1,0), k; =(1,0,0), ky, =(0,0,1), k;
= (—sin §, ~cos 4,0), and k; = k; and (b) the k-sphere construc-
tion that predicts ¢ = 90° + 6.
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Fig. 2. Measurements of image rotation as a function of the

solid angle Q (the calculated area in the k sphere) for case 1(a)
(see text).
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Fig. 3. Optical system to verify the predictions of a geometric
phase for a figure-eight path in the helicity sphere: (a) experi-
mental arrangement of mirrors with ky, = (0,1,0), k;
= (5,0,3)/(34)2, k, = (0,0,1), kg = (3,4,0)/5, and k, = k;
and (b) the corresponding l;-sphere construction.

(a) (b)

Fig. 4. Analysis of the geometric phase of the variable-angle
Porro system: (a) prism arrangement and (b) the corresponding

k-sphere construction that predicts ¢ = 26.

the same angle 6 between the hypotenuses of the two
prisms. The curve C resembles a tangerine slice, shown
in Fig. 4(b), with an enclosed spherical area of 26. The
180° rotation needed in binoculars is achieved by setting
0 = 90°.

The consecutive Dove system, shown in Fig. 5(a), con-
sists of two Dove prisms in series, where the angle be-
tween the verticals of the two is variable. This is an in-
teresting system because each Dove prism has onl_y one
reflection. As a consequence, in each of them the k vec-
tor describes a great semicircle as in the case of the
variable-angle Porro system. Note that here we have the
peculiar situation that k; = —k; for j = 2,3,4 because
the refractions between the two reflections do not alter
the relationship between the helicity and the propagation
vectors. The angle between the planes of the two great
semicircles is the same angle 6 formed by the verticals of
the two prisms, as shown in Fig. 5(a). The corresponding
spherical area is given by 360° — 26, as shown in Fig.
5(b). Indeed, a 180° rotator such as this one with 6
= 90° is described in Ref. 16. A similar effect is ob-
tained with reversion prisms. More details and mea-
surements on the variable-angle Porro and consecutive
Dove system will be given elsewhere.

Since this analysis also applies to the polarization of
the light, these arrangements can be used for making
pure polarization rotators, provided that linear-
polarization-preserving reflectors are used.

B. Case 1(b): l~(f #* l~<0
When the input and output helicity vectors are not paral-
lel, C is open. In such a case the parallel-transport con-
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struction and the application of the Gauss-Bonnet theo-
rem can still be made by connecting the input and output
points in the k sphere with a geodesic.1®2 Although a
geometric phase still exists for out-of-plane light paths,
the interpretation of the spherical area obtained when C
is forced to be closed is now more subtle. This is because
in order to obtain a measure of the rotation, we must com-
pare the final and initial images of light beams going in
different directions. We have verified experimentally
that except for the case in which the input and output he-
licities are antiparallel, the angle of rotation is indeed the
area obtained when C is closed with a (unique) geodesic.
We can compare the input and output images by trans-
porting without mirror inversion the final image along
the geodesic that closes C. Physically, this is equivalent
to steering the beam in the direction of k, with a
nonmirror-inverting in-plane steering system, such as a
coherent fiber bundle or an even set of reflections. In our
experiment we used the four-mirror arrangement of Fig.
6(a). We kept the direction of the output confined to the
horizontal plane and compared the input and output im-
ages by meafuring their orientations relative to the ver-
tical. The k-sphere construction is shown in Fig. 6(b),
and the results of our measurements are shown in Fig.
6(c).

Two popular systems under this case are the Amici and
Schmidt prisms.’® The Amici prism steers the beam of
light 90° with a “rooftop.” If the normals to the reflecting
faces of the prism are n; = (—1/y2, ~1/2, —1/2) and n,
= (1/V2, -1/2,-1/2), with k; = (0,1,0), then k;
= (-1/y2,1/2,-1/2) and k, = (0,0, —1). It can be cal-
culated that C forms a spherical triangle of area 180°.
Similarly, the Schmidt prism rotates the image by 180°,
with a steering angle of 45°. Other prism systems such
as the Penta and Wollaston prisms have a zero rotation
angle because they involve in-plane beam paths.

An important special case within this subdivision is
when k; = —kg, for which the closing geodesic is a great
semicircle. This is a case in which the closing geodesic is
not unique. One way to compare input and output im-
ages consistently is to have a horizontal closing geodesic.
The enclosed area is consistent with the image rotation
that is seen after the output beam is steered horizontally
without mirror inversion. Although this prescription ex-
plains the observed rotation, it is not clear that a geomet-
ric phase is really present in this case, because the final k
vector may be arrived at by either an in-plane or an out-
of-plane path.

(@ (b)
Fig. 5. Analysis of the geometric phase of the consecutive Dove
system: (a) prism arrangement and (b) the corresponding
k-sphere construction that predicts ¢ = 360° — 26.
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Fig. 6. System to test the case of noncyclic geometric phase with
an even number of reflections: (a) experimental arrangement of
mirrors  with kg = (0,1,0), k; = (-1,-1,0)/2"%, Kk,
= (-1,0,0), k3 = (0,0,1), and k, = (sin §,cos 6,0), (b) the
l~(-sphere construction, with the (dotted) closing geodesic that
predicts ¢ = —(90° + 6), and (c) experimental results.

4. CASE 2:
REFLECTIONS

All the systems that lie within this case produce a rota-
tion plus a mirror-inverted image. The constructions de-
scribed below account only for the rotation of the image.
Thus we must perform a mirror inversion on the final im-
age in order to compare it with the input. We can ac-
count for the effect of mirror inversion on linear polariza-
tion by changing the sign of the geometric phase.

ODD NUMBER OF

A. Case 2(a): if = l~(o 3

Since we have an odd number of reflections, the case k
= io implies that the input and output propagation vec-
tors are antiparallel. However, since C is closed there is
no ambiguity, and such a system is a pure rotator. This
case has been verified experimentally for polarization of
light.'” An interesting example of this case is the corner-
cube retroreflector. If the normals to the planes of the
cube are n; = (0,1,0), ny, = (1,0,0), and n3 = (0,0,1)
and if kg = (x,y,2) [with (22 + y2 + 222 = 1], then
k; = (x, —y, 2), ky, = (—x, —y,2), and k;
= (—x, -y, —2). The area formed by the resulting
spherical triangle is 180° (always!). An interesting appli-
cation of this is that a corner cube made of ideal mirrors
{(e.g., metallic mirrors with far-infrared radiation) pre-
serves the plane of linear polarization. A Michelson in-
terferometer or a laser cavity with these type of mirrors
will be alignment free and in addition will preserve linear
polarization.
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B. Case 2(b): l~(f * l~(o 5

For the cases in which the k vectors are not antiparallel,
the same prescription as for case 1(b) applies. If we use a
reflection to simulate the closing geodesic, the C-closing
reflection makes the image not mirror inverted, and it can
be compared directly with the input image. This case be-
comes identical to case 1(b).

There are important systems of odd number of reflec-
tions for which k vectors are antiparallel (i.e., kr = —kg).
This particular case represents an important class of
pseudorotators, for which the amount of rotation depends
on the orientation of the input. Thus the vertical axis for
the construction described below is defined by the vertical
of the incident image for image rotation or by the incident
plane of linear polarization for polarization rotation. A
popular pseudorotator is the Dove prism.?2 The prescrip-
tion here is, similarly to case 1(b), to close C with a non-
inverting horizontal geodesic. In this case the observed
rotation is consistent with the area of the closed C. If the
prism is tilted by an angle 6, then ¢ = 180° — 26, as
shown in Fig. 7. Pseudorotators are associated not only
with an odd number of reflections when the input and
output propagation vectors are parallel but also with sys-
tems with an even number of reflections when the input
and output propagation vectors are antiparallel (e.g.,
when a right-angle prism is used as a retroreflector).

As a final example, we present a popular system of
three orthogonal reflections that is used to rotate the po-
larization of laser beams by 90° (see, for example, p. 23 of
Ref. 8). A common misconception is that this system al-
ways rotates the polarization by 90°. However, here we
show that this is not the case. A sketch of such a system
in a general setting is shown in Fig. 8. Following our
convention for pseudorotators, let us assume that the in-
put linear polarization is aligned with the vertical. If #is
as defined in Fig. 8(a), then from the k-sphere construe-
tion shown in Fig. 8(b) and mirror inversion, the
polarization-rotation angle is —(90° + 26). To trans-
form the input linear polarization to an orthogonal orien-
tation, we must have 6 = m #/2, with m integer, which is
consistent with requiring that the input polarization be
parallel or perpendicular to the plane of incidence of the
first mirror. Interestingly, ordinary mirrors in the vis-
ible do not conserve linear polarization, thus preventing a
verification of the above relation and perpetuating the

misconception. We have verified this relation experi-
0l
0 3
<y -
1 2
(a) (b)

Fig. 7. Analysis of the geometric phase of the Dove prism: (a)
prism schematic and (b) the corresponding k-sphere construc-
tion, with the (dotted) closing geodesic that predicts ¢ = 180°
- 24,
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(b)

Fig. 8. Analysis of the geometric phase of a popular polarization
rotator made of orthogonal reflections, a noncyclic case with an
odd number of mirrors and antiparallel input and output k vec-
tors: (a) mirror schematic with ky=(0,1,0), k;
= (sin 6,0, —cos ), ky, = (cos 6, 0, sin 6), and k; = k; and (b) the
corresponding f(-sphere construction, with the (dotted) closing
geodesic that predicts ¢ = 90° + 24.
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Fig. 9. Measurement of the polarization (squares) and image
(circle) rotation for the mirror arrangement of Fig. 8(a). The re-

sults are consistent with the results of the f(-sphere construction
of Fig. 8(b).

mentally for images and polarization rotation. Figure 9
shows the measurements of the counterclockwise (owing
to mirror inversion) polarization rotation (squares) and
the clockwise image rotation (circles) as a function of the
input orientation . The polarization-rotation measure-
ments were done with a He—Ne laser and commercial di-
electric mirrors.'® Unlike pure rotators, with which the
image and the linear-polarization plane get rotated by the
same amount, in pseudorotators such as this one the ro-
tation for each one may be different.

5. SUMMARY AND CONCLUSIONS

In summary, we discuss here the analysis of all cases of
rotation of images by means of steering reflections or re-
fractions, using the concept of geometric phase. The
analysis is a useful and simpler alternative to analytical
methods for finding the rotation of images in complex
light-steering systems. We find that systems of even
(0odd) number of mirrors in which the input and output
beams are parallel (antiparallel) are pure rotators. Con-
versely, systems of even (odd) number of mirrors with an-
tiparallel (parallel) input and output beams are pseudoro-
tators. Two pseudorotators in a series produce a pure
rotator; the rotation angle (geometric phase) is deter-
mined by the relative orientation of the two rotators. Ex-
amples of the latter are the variable-angle Porro and the
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consecutive Dove prism systems discussed above. That
the concepts of geometric phase apply identically to light
polarization as well as to image rotation has important
applications for polarization rotators with polarization-
preserving steering components. Finally, regardless of
whether pseudorotators possess a geometric phase, here
we show that the k-sphere construction can be used to de-
termine the rotation they impart to images and polariza-
tion.
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