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Abstract

We present the principles of variable pure polarization rotators based on the accumulation of a geometric phase that is
obtained by coiling a beam of light via discrete reflections. They consist of two pseudo rotators in series. By changing the
angle between the pseudo rotators the geometric phase acquired by the light is varied. We describe in detail two important
examples: the variable-angle Porro rotator, which uses four linear-polarization preserving reflectors to work at a predeter-
mined wavelength range, and the variable compensating phase-shift rotator, which uses eight reflections to compensate the
overall s- and p-polarization phase shifts, and thus is achromatic. q 1999 Published by Elsevier Science B.V. All rights
reserved.

PACS: 03.65.Bz; 42.25.JA; 42.79.-e; 42.79.Bh
Keywords: Geometric phase; Berry’s phase; Polarization; Polarization rotator

1. Introduction

In recent years the application of concepts of
geometric phase to physical systems has led to a new

w xway to analyze these systems 1 . The basis of the
concept is that if a system is transported along a path
in parameter space it will gain a phase that depends
on the geometry of the path. This was first noticed in

w xquantum systems by Berry 2 but soon thereafter
Ž .geometric phase also known as Berry’s phase was

found to be present in classical systems as well. In
the context of Hamilton’s equations it is known as

w xthe Hannay angle 3 . In optics geometric phase
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manifests itself in several ways. In ‘coiled optics’
geometric phase manifests as a phase shift in a
circularly polarized light wave as it travels an off-

w xplane or coiled path 4 . Classically this can be seen
w xas rotating a rotator: a phase is gained lost if the

w xrotation of the rotator is in the same opposite sense
as the rotator’s internal sense of rotation. Therefore,
in coiled light the phase is equal and opposite for
circularly polarized waves of opposite handedness.
Coiling a linearly polarized wave, which is a super-
position of left and right circular polarized waves,
results in the rotation of the polarization plane. A
classical mechanical analogy of this is the Foucault

w xpendulum 5 . The coiled path of a light beam in-
duces similar rotations in image-bearing classical

w xoptical beams 6,7 . Another manifestation of geo-
metric phase in optics is the phase shift acquired by
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a light wave when the state of polarization is changed.
w xThe latter is also known as Pancharatnam phase 8 .

Geometric phase depends on the geometry of the
path, as opposed to the dynamical phase, which
depends on the optical path length.

Of these manifestations, Panchatnam phase has
Žfound applications in phase retarders see for exam-

w x.ple Ref. 9 . The geometric phase of coiled optics
has applications in polarization and image rotators.
Recently, the geometric-phase rotation of the polar-
ization in a coiled optical fiber was proposed as a

w xmechanical transducer 10 . However, for reasons
described below the polarization-rotation applica-
tions with mirrors have been slow to come. These
may be particularly suited for cases where transmis-
sive devices are inadequate. Here we present two
types of systems of reflectors that can be used for
polarization rotation throughout the visible.

The first direct experimental confirmation of
polarization rotation due to geometric phase in coiled
optics was done in a helically-wound optical fiber
w x4 . More recently a practical coiled-optics rotator

w xbased on discrete reflections was demonstrated 11 .
The reflectors were metallic mirrors, for use with
CO laser beams. A recent general study of geomet-2

ric phase rotators with coiled light found that pure
rotators of image as well as polarization return the

w xlight beam’s helicity to its initial state 7 . Pure
rotators rotate by an amount that is independent of
the orientation of the input. Systems that fall under
this category are mirror arrangements with an even
w xodd number of reflections where the input and

w xoutput beams are parallel antiparallel . These two
types of rotators are demonstrated experimentally in

w x w xRef. 11 . Conversely, odd even number of reflec-
w xtions with parallel antiparallel input and output

beams are pseudo rotators. In pseudo rotators the
amount of rotation depends on the orientation of the

w xinput polarization relative to the optical system 7 .
Ž .Optically active materials e.g., sugar and half wave

plates are conventional examples of pure and pseudo
rotators, respectively. Reflective pseudo rotators for
CO lasers consisting of only three metallic mirrors2

are indeed an alternative for high power systems
w x12,13 . However, the latter are possible only be-
cause of the near-ideal properties of metallic mirrors
in the mid- to far-infrared. In the visible, reflections
off metallic mirrors or total internal reflections do

not conserve linear polarization because the s- and
p-polarization components of the light acquire differ-

w xent phase shifts upon reflection 14 . As a conse-
quence, after one or more off-plane reflections, lin-
early polarized light quickly becomes elliptically po-
larized.

There are two ways to correct the phase-shift
problem. One is to add dielectric coatings to the
reflecting surfaces so that the phase-shift differences
are either 0 or p . In this article we report on a
variable pure rotator, and test it with two different
systems of reflectors that conserve linear polariza-
tion: total internal reflections with thin-film-coated
prisms and high-reflectivity mirrors. The simplest
reflective system where the geometric phase is accu-
mulated by a variable amount is the ‘variable-angle

Ž .Porro’ VAP system. This is similar to the system
used in binoculars but with the relative orientation of
the two prisms allowed to vary. This system is
suitable for thin-film-coated reflectors because the
angle of incidence for each reflection is always 458.

An alternative to using linear polarization-
preserving reflectors is to use a system of reflections
where each of the components of the light relative to
the optical system experience the same number of s-
and p-polarization reflections, and thus acquiring a
reflection phase shift difference of zero after the
passage through the entire system. A system of four
reflections working on such a goal has been pro-

w xposed as a variable rotator 15 . However, in such a
system the phase shift difference is cancelled only
approximately. More recently a system of eight re-
flections with a fixed rotation angle of 908 was
proposed, where the phase shift difference was can-

w xcelled exactly 16 . Here we propose a system com-
posed of eight reflections where the phase shift
difference is also cancelled exactly, but the rotation
angle is variable. Hereafter we will refer to it as the

Ž .‘variable compensating phase-shift’ VCPS system.
Coiled-light geometric phase may find interesting

applications on other polarization states. For ellipti-
cally polarized light the geometric phase manifests
as the rotation of the semi-major and semi-minor
axes without introducing a phase shift in the wave.
In the limit where the semi-minor axis is zero the
wave is linearly polarized, and the geometric phase
is the angle or rotation of the polarization plane. In
the limit where the semi-major and semi-minor axes
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are equal, i.e., circular polarization, their rotation
appears as phase shift in the wave. The rotators
described here introduce a variable geometric phase

Žwhile keeping the dynamic phase i.e., optical path
.length constant.

2. Geometric phase of variable rotators

The VAP system is a pure rotator that rotates
image or polarization by a variable amount. How-
ever, as mentioned earlier, in order to work its
reflectors must conserve the state of polarization. If
the s- and p-polarization reflection coefficients for a

< < Ž .reflector are given by r s r exp if and r ss s s p
< < Ž .r exp if , respectively, then the phase differencep p

between the two components dsf yf must bep s

either 0 or p for the reflection to conserve the state
of polarization. When ds0 the reflector is helicity
conserÕing. That is, it preserves the circular polariza-
tion handedness upon reflection. This is a unique
situation that occurs naturally in total internal reflec-

w xtion exactly at the critical angle 17 . Conversely,
when dsp the reflector is helicity reÕersing, thus
behaving like an ideal mirror for image or polariza-
tion: it switches the handedness of circular polariza-
tion upon reflection. An example of this is reflection
off a metallic mirror at a near grazing angle of

Fig. 1. VAP system for rotating linear polarization by f with
right-angle prisms. The angle u between the prisms is varied to
change the rotation angle: f s2u . The unitary propagation vec-

Ž . Ž . Ž .tors are k s 0,1,0 , k s y1,0,0 , k s 0,y1,0 , k s0 1 2 3
Ž . Ž .ysinu ,0,cosu , and k s 0,1,0 .4

Ž .Fig. 2. Mapping of the trajectory of the propagation vector k S
˜ Ž .and helicity vector k C for the VAP system. The area enclosed

Ž .by S and C i.e., the geometric phase is given by f s2u .

incidence. The geometric phase description is slightly
different for the two types of reflectors. In helicity
conserving systems the geometric phase is given by
the solid angle described by the propagation vector k
as it follows a closed circuit in configuration space
w x4 . That is, if we map the propagation vector of the
light on to a unit sphere and connect the tips of the
vectors after each reflection with geodesics, the re-
sulting curve S on the surface of the sphere will be
closed. The rotation of the orientation of a vector
perpendicular to the propagation vector as it is paral-

Ž .lel transported i.e., without twisting along S is, via
the Gauss–Bonnet theorem, equal to the spherical

w xarea bound by S 18 , or equivalently, equal to the
solid angle described by k. For the case of the VAP
system shown in Fig. 1 the path S along the unit
sphere is shown in Fig. 2. It can be seen that S is a
tangerine-shaped surface made of two great semicir-
cles that are each contained in planes forming an
angle u . The angle u , shown in Fig. 1, is the angle
between the prisms. The area enclosed by S is 2u .
The sense of rotation is the sense of the path along S

Žas seen from the center of the sphere e.g., clockwise
.in Fig. 2 . In contrast, for systems with helicity

reversing reflectors the geometric phase is given by
the solid angle described by the helicity vector,

˜ nŽ .defined by k s y1 k , where k is the propaga-n n n
w xtion vector after the n-th reflection 19 . For the VAP
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Fig. 3. Schematic of the VCPS system made of cemented right-an-
Ž .gle prisms. The unitary propagation vectors are k s 0,1,0 ,0

Ž . Ž . Ž . Ž .k s 0,0,1 , k s y1,0,0 , k s 0,0,1 , k s 0,y1,0 , k s1 2 3 4 5
Ž . Ž . Ž .ysinu ,0,cosu , k s cosu ,0,sinu , k s ysinu ,0,cosu , and6 7

Ž .k s 0,1,0 .8

system the helicity vector describes path C in con-
figuration space, as shown in Fig. 2. In systems with
helicity preserving reflections S and C are the same.
Due to the symmetry of the VAP system the areas
enclosed by S and C are the same. However, in
general the two may be different, as shown for a

w xspecific system in Ref. 11 .
Variable pure rotators based on geometric phase

consist of two pseudo rotators in series. The first
pseudo rotator moves the input helicity vector to its
antipode in the unit sphere via the curve C . The1

second one returns the helicity vector back to the
initial state via the curve C . The geometric phase is2

varied by rotating one pseudo rotator relative to the
other and thus varying the area enclosed by C and1

C . In the case of the VAP each right-angle prism2
Ž .or mirror equivalent is a pseudo rotator. The VAP
is the simplest variable pure rotator because the right

angle prism is the simplest two-reflection pseudo
rotator. In the case of the VAP of Fig. 1, C and C1 2

are the two great semicircles that form C.
Important pseudo rotators with three reflections

Ž .are the reflective Dove rotator or reversion prism
w x12,13 and the popular rotator that produces coiled

w xorthogonal reflections 7 . For these systems to be
pseudo rotators an odd number of the reflectors must
be helicity reversing. Otherwise each device will be
a pure rotator with a fixed rotation angle of 0 and
pr2, respectively.

The VCPS system, shown in Fig. 3, consists of
two four-reflection pseudo rotators, which similarly
to the right angle prism, retroreflect the incoming
beam. The purpose of the two additional reflections
on each pseudo rotator is to cancel the s–p phase
shift difference. In contrast to the VAP system,
where a zero phase shift difference is required for
each reflection, in the VCPS system the requirement
is a zero phase shift difference over the four reflec-
tions of the pseudo rotator. That is, each reflection
may induce s–p phase shift differences, but after the
four reflections these will compensate. This is done
by having an even number of orthogonal reflections
such that each component of the light wave is the
s-polarization component in half the reflections and
the p-polarization component in the other reflections.
Each component will then acquire the same phase

Fig. 4. Geometric phase construction for the VCPS rotator. The
Ž .area enclosed by C i.e., the geometric phase is given by f s2u .
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shift through the entire system, resulting in no phase
shift difference. If we assume that there is a zero
phase shift difference at each reflection, each VCPS
pseudo rotator moves the helicity vector to its an-
tipode through the curves C and C , shown in Fig.1 2

4, which in essence are great semicircles. The rota-
tion due to geometric phase is the same as for the
VAP system: fs2u . If we want to take into ac-
count the phase shifts acquired in each reflection we
have to analyze the geometric phase using a more

w xgeneral construction 20–22 , which accounts for
Pancharatnam phase in addition to the coiled-light
phase. For the VCPS system the Pancharatnam phase
is zero as long as all the reflectors are identical.

One disadvantage of both the VAP and VCPS
systems is that the output and input beams are
parallel but not collinear, and with the displacement
between the two changing with the angle between
the prisms. The input–output displacement can be
made constant by adding a periscope that displaces
the output-beam axis to the turning prism’s rotation
axis. The beam from this axis can be displaced
further to the input beam axis by adding a second
periscope. The periscopes can be either the two-re-
flection linear polarization-preserving type or the
four-reflection VCPS type. Periscopes do not induce
a coiled-light geometric phase.

3. Polarization-preserving reflectors

3.1. Coated total internal reflecting prisms

Total internal reflection is particularly suited for
this type of application because the reflectance of
both polarization components is 1. This prevents
pseudo rotations due to uneven reflectances. Thin-
film coatings on totally reflecting right angle prisms
can be used to make helicity conserving reflections
Ž .i.e., ds0 . For a system with m coating layers, d

is a function of the index of refraction of the glass
n , the index of refraction n and thickness d ofg i i

Ž .each layer is1, . . . ,m , the wavelength of the light
l and angle of incidence u . This problem has been

w xsolved for ms1,2,3 23 . For ms1 there is a small
Žrange of solutions. For example, for n s1.51 BK7g

.glass the solutions for n are 1.225Fn F1.335.1 1

This has been demonstrated experimentally with a

Ž .layer of CaF ns1.23 at 546 nm on a BK7 prism2
w x24 . Conversely, if we pick a popular coating such

Ž .as MgF n s1.38 then the range of solutions for2 1

n is 1.793Fn F1.952, which corresponds to ag g

heavy Flint glass. The lowest wavelength tolerance
Ž .ddrdl is achieved at the ends of the ranges, with
the best tolerance occurring at the critical-angle con-

'dition n sn r 2 . Increasing the degrees of free-1 g

dom, namely m, decreases the restrictions on the
indices of refraction of the glass and coatings. With
two coatings the restrictions on prism and coatings’
refractive indices get relaxed and one can use more
common materials. More coating layers can be used
to further minimize ddrdl with the goal of making
the polarization-preserving reflection achromatic.

We tested the ms2 case with two right-angle
BK7 prisms coated commercially with thin-film lay-

Ž .ers of ZrO prism side and MgF , with thickness of2 2

23.86 nm and 135.85 nm, respectively. The predicted
Žwavelength for ds0 was 444 nm with ddrdl 444

. y1 Žnm sy0.004 nm . In our calculations we used
5th order polynomial expressions for the dispersion
of the glass and layers. At 444 nm the indices are:

.n s1.526, n s1.393, n s2.047. TheBK7 MgF ZrO2 2

polarization preserving properties of the reflectors
were tested by measuring the degree to which an
input linearly polarized wave becomes elliptically
polarized. The coated prisms were tested with the
linearly polarized output of a nitrogen-pumped dye
laser, focused to infinity with a Newtonian-type tele-
scope. The laser beam was attenuated with neutral
density filters and sent to one of the prisms with a
polarization azimuth angle of 458 relative to the
hypotenuse. This way the linearly polarized light had
equal s- and p-polarization components on each total
internal reflection. The laser beam emerging from
the prism after the two orthogonal internal reflec-
tions was analyzed using a Glan–Thomson polarizer
and large surface-area photodiodes. We analyzed the
unsaturated output of the photodiode with a digital
oscilloscope. As we stepped the wavelength of the
laser we measured I and I , the minimum andmin max

maximum intensities transmitted though the polarizer
at orthogonal orientations, respectively. We found
ellipticity of the beam to have a minimum around
449 nm. We obtained a measure of the ellipticity e
with e2 s I rI . The crosses in Fig. 5 show ourmin max

measurements of e2 for the prism described above.
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Fig. 5. Measurements of e2 s I r I for a linearly polarizedmin max

laser laser beam with an azimuth of 458 reflected off the coated
Ž . w xright angle prism q , coated Ag mirror New Focus model 5103

Ž . w x Ž .I , dielectric mirror New Focus model 5102 = , Al mirror
w x Ž . Ž .CVI model PAUV ^ and the VCPS system e .

We found that between 448 nm and 450 nm e2 -2P

10y5.

3.2. Polarization-preserÕing mirrors

Front surface mirrors can also be polarization-
preserving. Although we did not carry a comprehen-
sive search, we found only one off-the-shelf com-
mercial mirror made to minimize s–p phase shift
differences over a broad range of wavelengths: it is a

Ž .coated-Ag mirror from New Focus model 5103 . It
preserves linear polarization over a broad range of
wavelengths centered around 570 nm: measurements
of e2 for this mirror are shown by the squares in Fig.
5.

These results were obtained by measuring Imin

and I after one orthogonal reflection off themax

mirror. The incident dye laser beam was linearly
polarized with an azimuth angle of 458, and the
reflected beam was analyzed with a Glan Thomson
polarizer and photodiode. Different dyes were used
to span the entire visible spectrum.

Ordinary Al mirrors do not conserve linear polar-
ization in the visible. As an example we show mea-

2 Žsurements of e for a commercial Al mirror CVI
. Ž .model PAUV in Fig. 5 triangles . High reflectivity

dielectric mirrors may also be linear polarization-
preserving at one or more range of wavelengths. We
found a useful one: New Focus model 5102 is linear

Ž 2 y3.polarization-preserving near 633nm e ,1P10 .
Measurements of e2 for this mirror are represented
by symbols ‘=’ in Fig. 5. It has a minimum at 638

Ž 2 y4.nm e , 2 P 10 . Both polarization-preserving
mirrors are helicity reversing.

4. Experimental verifications

We constructed two VAP rotators, one made with
the double layer right-angle prisms described in Sec-
tion 3 and another one using four 1-in diameter

Žlinear polarization-preserving reflectors New Focus
.model 5102 . The optical components in both de-

vices were mounted in machined Al parts. Fig. 6
shows the data for the polarization rotation using the
prism-based rotator. It can be seen that it indeed has
the polarization-rotation properties predicted by geo-
metric phase: a linear fit to the measured polarization
rotation f as a function of the angle u gave: fsau

Ž . Ž .qb with as1.995 2 and bs1.7 1 . We obtained
similar results with the mirror-based device: as

Ž . Ž .2.008 30 and bsy1.38 1 . The constant b repre-
sents the systematic uncertainty in the mechanical
position of the rotator that defined us0.

We constructed one full VCPS rotator made of
BK-7 right-angle prisms cemented together with
matching refractive index optical adhesive. We mea-
sured e2 for the full glass VCPS rotator over the
entire visible spectrum, and found that it was always

Fig. 6. Measurements of the polarization rotation f using the
VAP system with thin-film coated right-angle prisms. Also shown

Ž .is a linear fit to the data see text .
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less than 2P10y3. These measurements are repre-
sented by the diamonds in Fig. 5. The small elliptic-
ity may be due to finite reflections at the interfaces
of the glued prisms. A better device must be a single
piece of glass. We also confirmed that the polariza-
tion rotation for the VCPS rotator was given by
fs2u . We also made two VCPS pseudo rotators,
each made with two types of mirrors: dielectric and
metallic. They were constructed with 1-in diameter
mirrors mounted on standard mirror mounts. In both
cases we found the VCPS pseudo rotators to be
achromatic. We also found that for departures of up
to two degrees in the misalignment of the two pseudo
rotators ellipticities increase to e2 ;0.02.

5. Conclusions

In summary, we have demonstrated a new type of
variable pure polarization rotators based on the con-
cepts of geometric phase. These systems preserve all
states of polarization, rotate the polarization plane
for linear polarization and the ellipse axes for ellipti-
cal polarization. For circular polarization, which has
no preferential spatial axes, the geometric phase
manifests in an overall phase shift in the wave,
which can be varied without changing the optical
path length. We describe in detail two important
cases: the VAP and the VCPS systems. Each consists
of two pseudo rotators in series, which produce a
geometric phase that varies with the orientation be-
tween them. The VAP relies on four wavelength-de-
pendent linear polarization-preserving reflectors. We
verified the predictions of geometric phase in this
system with two helicity-preserving right angle
prisms and four helicity-reversing commercial mir-
rors as reflectors. The VCPS system is also a vari-
able pure rotator, but achromatic. We verified this

experimentally using uncoated right-angle prisms and
identical sets of high reflectivity mirrors. Mirror
versions of these polarization rotators may be an
important alternative to conventional rotators, which
in the visible are only transmissive.

References

w x1 A. Shapere, F. Wilczek, Geometric phases in physics, World
Scientific, Singapore, 1989.

w x Ž . Ž .2 M.V. Berry, Proc. R. Soc. London Ser. A 392 1984 45.
w x Ž .3 J.H. Hannay, J. Phys. A 18 1985 221.
w x Ž .4 R.Y. Chiao, Y.-S. Wu, Phys. Rev. Lett. 57 1986 933; A.

Ž .Tomita, R.Y. Chiao, Phys. Rev. Lett. 57 1986 937.
w x Ž .5 M.V. Berry, Sci. Am. 1988 46.
w x Ž .6 M. Segev, R. Solomon, A. Yariv, Phys. Rev. Lett. 69 1992

590.
w x Ž .7 E.J. Galvez, C.D. Holmes, J. Opt. Soc. Am. A 16 1999

1981.
w x Ž .8 R. Bhandari, Phys. Rep. 281 1997 1.
w x Ž .9 P. Hariharan, P.E. Ciddor, Opt. Commun. 110 1994 13.

w x Ž .10 F. Wassmann, A. Ankiewicz, Appl. Opt. 37 1998 3902.
w x Ž .11 E.J. Galvez, P.M. Koch, J. Opt. Soc. Am. A 14 1997 3410.
w x Ž .12 L.H. Johnston, Appl. Opt. 16 1977 1082.
w x Ž .13 C.E. Greninger, Appl. Opt. 27 1988 774.
w x14 F.A. Jenkins, H.E. White, Fundamentals of optics, Mac-

Graw-Hill, New York, 1957.
w x Ž .15 K. Jain, US patent 4252410 1981 .
w x Ž .16 W.A. Challener, Appl. Opt. 35 1996 6845; US patent

Ž .5751482 1996 .
w x Ž .17 M.V. Berry, Nature 326 1987 277.
w x Ž .18 L.H. Ryder, Eur. J. Phys. 12 1991 15.
w x19 M. Kitano, T. Yabuzaki, T. Ogawa, Phys. Rev. Lett. 58

Ž .1987 523.
w x20 H. Jiao, S.R. Wilkinson, R.Y. Chiao, H. Nathel, Phys. Rev.

Ž .A 39 1989 3475.
w x Ž .21 R. Bhandari, Phys. Lett. A 135 1989 240; R. Bhandari,

Ž .Physica B 175 1991 111.
w x Ž .22 J.H. Hannay, J. Mod. Opt. 45 1998 1001.
w x Ž . Ž .23 E. Cojocaru, Appl. Opt. 31 1992 4340; 33 1994 2678.
w x24 Z.P. Wang, W.M. Sun, S.L. Ruan, C. Kang, Z.J. Huang, S.Q.

Ž .Zhang, Appl. Opt. 36 1997 2802.


