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ABSTRACT
We study the geometric phase that is acquired when the second-order mode of an optical beam undergoes a cyclic
transformation. We ¯nd that a geometric phase appears when the initial and intermediate modes have di®erent
quantities of orbital angular momentum. The phase is similar to the one measured previously for transformations
of ¯rst-order modes. However, we ¯nd no accumulated geometric phase when the initial and intermediate modes
have zero orbital angular momentum.
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1. INTRODUCTION
Geometric phase or Berry phase is a topological phase that appears when a physical system undergoes a cyclic
change in the space of parameters or states.1 Since Berry's original discovery, geometric phases have been
discovered in many physical contexts. What is interesting about this phase is that it is unbound, and in many
cases unanticipated. In optics it has been found in many contexts: for cyclic paths in the direction of the spin
of the photon (spin redirection phase),2, 3 for cyclic changes in the polarization state of the light (Pancharatnam
phase),4 and more recently for cyclic transformations in the high-order modes of a Gaussian beam (orbital
phase).5 The optical geometric phase has been found in many contexts, yielding many useful applications.6

Because of the low dimension of the spaces studied thus far, the phase has always been represented geometrically
in terms of paths in a spherical geometry. A geometric phase has been found in all cases.

The orbital phase o®ers the possibility of exploring higher dimensional spaces. Solutions to the paraxial
wave equation give rise to well known Hermite-Gauss (HG) and Laguerre-Gauss (LG) modes.7 These modes are
represented in terms modes indices. In the rectangular HGnm modes, n and m represent the number of nodes in
the Hermite functions in x and y directions, respectively. In the cylindrical LG`

p modes, p represents the number
of radial nodes in the Laguerre functions, and ` represents the multiples of 2¼ that the phase advances per full
turn of the axial variable. Optical beams in the latter modes carry orbital angular momentum of `¹h per photon.
Mode converters discovered thus far rephase the wavefront of the wave so as to produce transformations that
preserve the order number N = n + m = 2p + j`j. In con¯ned systems, such as a laser cavity, modes of di®erent
order have di®erent energy. So far only the geometric phase in the space of order one has been studied.5, 8, 9

In addition, there is an aspect of the optical geometric phase that has been subject of debate: whether
or not the geometric phase arises from the exchange of angular momentum between the light and the optical
system.10, 11 In spin-redirection and Pancharatnam phase, the phase has been tied to the exchange of spin angular
momentum, while the orbital phase involved an exchange of orbital angular momentum.5 While this connection
has been suggested, it has not been demonstrated. Van Enk's original conjecture10 stated that if a geometric
phase is mediated by angular momentum exchange, then a cyclic path between states of the same orbital angular
momentum would not produce a geometric phase. In all previous studies the low dimensionality of the space
forced exchanges of angular momentum for any closed topological path.

With the higher dimensional spaces of order N , the space of modes provides a potential system to test this
conjecture. Orders greater than one may allow paths between states with the same value of the orbital angular
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momentum. For a given value of N all LG eigenmodes have a di®erent value of `. HG modes do not carry
orbital angular momentum. Thus the only possibility for transformations between eigenmodes is for the case
where ` = 0. When N is odd, one of the LG solutions has ` = 0, and thus can be used in conjunction with the
HG modes for making a path where the initial, intermediate and ¯nal modes have no orbital angular momentum.

In this article we investigate the geometric phase in a higher dimensional space than previously considered.
In particular we concentrate on the N = 2 mode space. We ¯nd results that are consistent with the angular
momentum exchange conjecture. In the second section we present the theoretical context and in the third section
we present the experimental set up for carrying the experimental tests.

2. MATHEMATICAL FRAMEWORK
In the space of ¯rst order modes (N = 1), suitably oriented ¼=2 converters transformed the phase front of the
beam from a HG eigenstate to an LG eigenstate. This transformation, given by a unitary matrix operation on
the HG eigenmode, had a corresponding path on the orbital Poincar¶e sphere.9 Such a path was a geodesic that
followed a meridian on the sphere from the south pole (LG¡1

0 ) to the Equator (HG01). A closed path made of
similar geodesics produced a geometric phase: one geodesic along the equator to a point of longitude 2µ (HG01
rotated by µ) and another geodesic one back from the equator to the pole. The geometric phase corresponded to
the area enclosed by the curve on the sphere.5 Varying the longitude of the second intermediate state changed
the area and thus the geometric phase.

Analytically, the paths were represented by unitary 2 £ 2 matrices and the modes by spinor vectors. The
matrix T representing the closed path had as eigenvectors the initial/¯nal modes Ã and as eigenvalue the
geometric-phase (Á) shifting term:

TÃ = eiÁÃ; (1)

In the space of second-order modes we no longer have the visual convenience of the orbital Poincar¶e sphere,
but we can proceed with the analytical ray-tracing method using the space of ¯rst-order modes as a guide.
Although it has yet to be demonstrated, we speculate that certain transformations can be reduced to subspaces
that can be described by a spherical geometry.

We follow the matrix formalism of O'Neill and Courtial.12 In the HG representation of order N = 2 the
fundamental modes HG20, HG11 and HG02 form the basis vectors
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Cyclic mode transformations involve the fundamental LG modes, which in the HG basis are given by

LG+2
0 =

1
2

0
@

¡1
i
p

2
1

1
A ; LG0

1 = 1p
2

0
@

1
0
1

1
A ; LG¡2

0 =
1
2

0
@

¡1
¡i

p
2

1

1
A : (3)

In this work we will consider only modes and transformations that we can reproduce in the laboratory. For
mode transformers we use the ¼=2 mode converter that transforms H G modes into LG modes and vice versa.
We also use optical rotators to rotate the rectangular HG modes. The matrices representing them are given by
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Some of the intermediate modes are rotated versions of the fundamental HG modes. For example, mode
HGnm rotated clockwise by an angle ® is represented mathematically as:

HGnm(®) = R(®)HGnm: (5)

One can verify, for example that H G02 = R(¼=2)HG20. In order to properly convert the rotated HG modes to
LG modes we need a rotated ¼=2-converter. Analytically we obtain the matrix for the ¼=2-converter rotated by
an angle ® using

C¼=2(®) = R(¡®)C¼=2R(®): (6)

We can pick a ¯rst geometric-phase path in analogy to the ¯rst-order modes:

T1 : LG¡2
0

C¼=2! HG02
R! H G02(µ)

C¼=2! LG¡2
0 : (7)

Analytically, this expression is given by

T1(µ) = C¼=2(¼=4 ¡ µ)R(µ)C¼=2(¡¼=4) (8)

In order to generate a geometric phase we need

T1(µ)LG¡2
0 = eiÁLG¡2

0 : (9)

The relation between Á and µ in general depends on the geometry of the path, and as we will ¯nd here, on the
initial/¯nal mode. For the particular case of Eq. 9, we ¯nd Á = 2µ.

In the LG basis, where LG¡2
0 is a basis vector, T1(µ) should be diagonal. The matrices to change basis from

HG to LG and vice versa are given by12
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Under this basis the fundamental LG modes are given by
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The matrix for the closed path T1 is then given by

T1¡LG = BHG!LGT1(µ)BLG!H G =

0
@

ei2µ 0 0
0 1 0
0 0 e¡i2µ

1
A ; (12)

which is indeed diagonal. Notice that the same transformation gives a di®erent geometric phase for di®erent
eigenmodes. In particular, LG0

1 acquires no geometric phase. Under T1 this mode transforms as:

T1 : LG0
1

C¼=2! HG11
R! HG11(µ)

C¼=2! LG0
1 (13)

Notice that none of these states carry orbital angular momentum.

Consider now another geometric-phase path:

T2 : H G20
C¼=2! LG+2

0
C¼=2! H G20(µ) R! HG20: (14)

This transformation is given by

T2(µ) = R(¡µ)C¼=2(¡¼=4 ¡ µ)C¼=2(¼=4) (15)



Figure 1. Schematic of the apparatus to produce second-order modes. A HeNe laser beam is used to generate LG§20
modes via a charge-2 forked grating (G). The modes were combined in two nested Mach-Zehnder interferometers, and
interfered with a zero-order mode. The phase of the latter is changed with a piezo-driven mirror (Mp). Other elements
include non-polarizing beam splitters (BS) and a neutral density ¯lter to attenuate the reference beam.

This transformation indeed produces a geometric phase:

T2(µ)HG20 = e2iµHG20 (16)

Similarly to Eq. 12, we ¯nd that this transformation in the HG basis is diagonal:

T2 =

0
@

ei2µ 0 0
0 1 0
0 0 e¡i2µ

1
A : (17)

It also shows that the transformation of HG11, which involves the path

T2 : H G11
C¼=2! LG0

1
C¼=2! H G11(µ) R! HG11; (18)

involves states bearing no orbital angular momentum, and produces no geometric phase.

In comparing T1 and T2 we ¯nd that the common feature of the two is that transformations involving orbital-
angular-momentum exchanges (e.g., ¢` = 2 for HG20 ! LG+2

0 ) produce non-zero geometric phases. The only
paths that produce no geometric phase involve no net angular momentum exchanges between the initial and
¯nal modes in each of the transformations.

A generalization of this approach to mode spaces of order N can be subdivided in terms of the parity on N .
For N odd all topological paths will generate a non-zero geometric phases. When N is even there will be sets
of ¢` = 0 transformations between ` = 0 modes that do not generate a geometric phase. It also seems that the
value of the geometric phase is limited by the maximum value of ¢` in the intermediate transformations of a
given closed path. For example, for N = 4 there will be three possible geometric phases for a given path similar
to the ones described here: 4µ, 2µ and 0.

3. EXPERIMENTAL METHOD
We used a method similar to the one used previously.5 The apparatus consists of two parts. One part, shown in
Fig 1, prepares the beam in the high-order mode under study and combines it with a reference beam. A second
part, shown in Fig. 2, provides the mode transformations on the input beam.

The method uses interferometry with a collinear reference beam, a method ¯rst used by us in the analysis of
modes.5 This method is similar to the one used previously in studies of the Pancharatnam phase.13 The incident
beam in the high-order mode is combined with a reference beam in the zero-order mode (i.e., HG00 = LG0

0) and



Figure 2. Schematic of the sequence of transformers used for measuring geometric phases for transformations T1 and T2
(see text).

sent collinearly through all the transformers. Since the N = 0 mode is the only one in its space it does not get
transformed at all and thus acquires no geometric phase. However, by sending it collinearly with the high-order
mode we subtract out dynamical phases produced by the apparatus when the geometric phase is varied.

As shown in the schematic of Fig. 1, the zero-order output of a 5 mW HeNe laser beam was sent to a charge-2
forked di®raction grating. This was an amplitude binary grating that we fabricated by photoreduction of a
computer-generated pattern.14 The central (LG0

0) and two ¯rst-order di®racted beams, in the modes LG+2
0 and

LG¡2
0 , were sent to two nested Mach-Zehnder interferometers. The central LG0

0 mode, used as a reference beam,
took the top branch of external Mach-Zehnder interferometer. It was re°ected by a mirror that was translated
by piezo electric transducers. We used this to add a dynamical phase between the reference beam and the beam
in the high-order mode.

Each of the modes LG+2
0 and LG¡2

0 was sent through one the arms of the internal Mach-Zehnder interferom-
eter. For the cyclic mode transformation T1, we used one of the modes LG+2

0 or LG¡2
0 by blocking the proper

arm of the interferometer. For transformation T2 we prepared mode H G11 by interfering the LG+2
0 and LG¡2

0
modes with the appropriate phase.

The output of the Mach-Zehnder interferometer was sent to the sequence of mode transformers shown in
Fig 2. The ¯rst transformer was a ¯xed ¼=2-converter, and the third transformer was a rotatable ¼=2-converter.
The second and fourth transformers were rotators. Each rotator consisted of a mirror and a rotatable Dove
prism. The combination produced an image rotation without inversion. Transformation T1 was made using the
¯rst three transformers, and keeping the last rotator ¯xed at µ = 0. For transformation T2 we used the ¯rst,
third and fourth transformers, keeping the second rotator ¯xed at µ = 0.

To test the input modes we imaged them before and after the ¯rst mode converter. Figure 3a shows the
predicted transformation of the modes. The di®erent shades of gray represent the di®ering phases of the mode
of the light on a transverse plane. For the case of LG+2

0 (¯rst column) the input mode has the characteristic
doughnut-shaped pro¯le with a phase the winds by 4¼ in one turn. After the converter we get a rotated
HG20(¼=4) mode, which has three lobes, with the middle one out of phase with the outer two by ¼. In the
second column we have as input the rotated HG11(¼=4) mode, which gets converted into the LG0

1 mode by the
¼=2-converter. The lobes of HG11(¼=4) that are opposite to each other are in phase, but are out of phase by
¼ with the other two. The LG0

1 mode has a center spot surrounded by a ring with opposite phase. Shown in
row (b) of Fig. 3 are the images of the modes before and after the conversion. The images were taken in false
color and then converted to gray scale. All images in row (b) show the expected patterns. The last two rows
(c) and (d) show the images that result when we allow the reference beam to go through so that it interfered
with the mode. The phase of the reference beam was adjusted so that in (d) it was close to ¼ relative to that in
row (c). We can see that the regions of constructive interference shifter accordingly: for LG+2

0 they rotated by



Figure 3. Modes before and after converter. In the ¯rst and second columns we have the transformations LG+2
0 !

HG20(¼=4) and HG11(¼=4) ! LG01 , respectively. Row (a) is the predicted transformation. Row (b) is the measured
images of the modes. Rows (c) and (d) are the interference of the modes with the zero-order reference beam in a di®erent
phase relative to the high-order modes.

90 degrees; for HG20(¼=4) they switched from the outside lobes being intense to the middle; for HG11(¼=4) the
diagonal lobes switched in intensity; and for LG0

1 the center spot switched in brightness with the surrounding
ring. Deviations from the expected (ideal) intensity distributions were caused by the smaller size and slight
asymmetry of the reference beam. The latter was caused by the amplitude grating that we used.

4. PRELIMINARY RESULTS AND CONCLUSIONS
Our preliminary results con¯rm the predictions presented here. When using state LG¡2

0 and transformation T1,
which result in exchanges of orbital angular momentum between the light and the optical system, we observe a
geometric phase. Although our experiments are ongoing, preliminary results indicate that the geometric phase
is indeed 2µ. In addition, when we use HG11 as the initial state with transformation T2, we observe no phase
shift in the light as we change the topology of the path (i.e., µ).

In summary, we have explored a new higher-dimensional regime of the orbital geometric phase in a space
of modes that had not been studied before. We ¯nd that the geometric phases involved depend on the states
involved as well as the paths. While we were not able to ¯nd a path that involved a constant value of `, the
absence of geometric phase for transformations involving ` = 0 states, regardless of its topology, supports the
conjecture that ties the geometric phase to the exchange of angular momentum between the light and the optical
system.
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