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ABSTRACT

We present a study of composite vortices in light beams using component beams with no integral topological
charge. We observed the same general features that are seen in when the component beams have an integral
topological charge [E.J. Galvez, N. Smiley, and N. Fernandes, “Composite optical vortices formed by collinear
Laguerre-Gauss beams,” Proc. SPIFE 6131, pp. 19-26, 2006.]. These are: (1) that new vortices appear at
distances from the beam that depend on the ratio of the intensity of the component beams, and (2) that the
angular location of the vortices depends on the phase difference between them. We also observed that some of
the vortices associated with fractional charge that did not follow the same dynamics.
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1. INTRODUCTION

The wave patterns that result when collinear light beams bearing optical vortices are superimposed constitute
an interesting problem in singular optics. These patterns are far from intuitive. They exhibit an abundance of
optical vortices whose position is well determined by the general characteristics of the component beams: the
individual topological charges, their intensity ratio and relative phase.’ In this work we extend our previous
studies to the case where the component beams have a non-integral topological charge.

Beams with a non-integral topological charge are composite beams themselves because they can be expressed
in terms of an infinite superposition of modes of integral topological charge.® The general properties of these
optical beams have been studied before.>™® The relative positions of the vortices that they contain are determined
by the relative complex amplitude of the terms in the superposition. Thus, the question of whether the features
of composite vortex beams generated with non-integral charge are any different than those with integral-charge
component beams begs for an answer.

In this work we investigate this question from an experimental perspective. Because beams with half-integral
topological charges are not expressed in a closed form,®% the composite pattern cannot be determined by the
simple model used previously.! Therefore, our study is only experimental. In Sec. 2 we describe the method
that we used in our experiments. In Sec. 3 we summarize previous results of composite beams with components
of integral topological charge and the characteristics of beams with non-integral topological charge. Our results
are presented in Sec. 4, but divided into three subsections: one for the study of the patterns as a function of the
relative intensity of the component beams, another one for the study as a function of the relative phase, and a
third subsection to investigate the fate of the fine structure of singularities in half-integer components. We close
in Sec. 5 with our conclusions.

2. APPARATUS

A schematic of the setup that we used is shown in Fig. 1. A linearly polarized Gaussian beam from a HeNe laser
was sent to two nested Mach-Zehnder interferometers. The light going through the lower branch of the outer
interferometer entered the inner interferometer, which was used for making the composite beam. The light going
through the upper branch was used as a reference beam for making fringe patterns. We used these patterns to
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Figure 1. Schematic of the apparatus. It consisted of two nested Mach-Zehnder interferometers with forked diffraction
gratings G(¢1) and G(¢3) to make the component beams of charge ¢1 and {3, respectively, and with half-wave plates (H)
and polarizers (P) for controlling the relative intensity of the component beams. Neutral density filters (F) and a lens
were used to attenuate and expand the reference beam.

identify the optical vortices and dislocations. We typically adjusted the size and intensity of the reference beam
with a lens or a beam expander and neutral density filters to obtain the desired interferograms.

The components of the composite beam were generated in the arms of the inner Mach-Zehnder interferometer
via forked diffraction gratings (G) of charge ¢; and ¢5 located in each of the arms. These were passive binary
gratings made by photoreduction of computer-generated patterns.® The mirrors in conjunction with the second
beam-splitter of the interferometer were adjusted to align one of the first-order diffracted beams of each grating
into collinear paths outside the interferometer. All the components were mounted on pedestal mounts for greatest
stability against vibrations.

The laser was oriented to emit light polarized in the vertical direction. A vertical polarizer placed before the
interferometer eliminated any unwanted horizontal components. In the upper branch of the inner interferometer
we placed a half-wave plate (H) with its axis at 45° from the vertical to flip the polarization to the horizontal
direction. As a consequence, the component beams of charge ¢; and €5 were orthogonally polarized as they exited
the interferometer. After the inner interferometer the combination of a half-wave plate followed by a polarizer,
with the latter set to the vertical direction, served to project the polarization of both components along the same
direction and interfere. By rotating the half-wave plate we controlled the relative intensity of the component
beams; i.e., when the half-wave plate’s axis formed the angle 6 with the vertical direction the relative intensity
of the composite beams was I /I = tan? 26.

The composite beam combined with the reference beam at the second beam splitter of the outer interfer-
ometer. Together they projected a fringe interference pattern onto a charge-coupled-device (CCD) camera. A
polarizer placed before the CCD camera was rotated to adjust the intensity of the light reaching it.

Further author information: (Send correspondence to E.J.G.)
E.J.G.: E-mail: egalvez@mail.colgate.edu, Telephone: 1 315 228 7205



3. SUMMARY OF PREVIOUS WORK
3.1. Composite Vortices

We will start by summarizing the results of our previous work on composite vortices using component beams
with integral topological charge.! Let us consider two component beams with topological charges ¢ and ¢, of
sign o1 = &1 /|61| and o9 = €o/|0og|, with intensities I; and Iy respectively, and a relative phase 4.

1. Case 01 < {o:

¢ The composite beam has |¢;| vortices of charge oy located in the center, surrounded by |f3 — ¢ ]
vortices of charge o5 located symmetrically along the periphery of the composite pattern and at the
same radial distance from the center.

¢ The radial position of the peripheral vortices is given by
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where w is the waist of the beam. That is, the peripheral vortices move either in or out as we vary
the relative intensity of the component beams.

¢ The angular positions of the peripheral vortices are given by
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where n =1, ..., (2|2 — ;| — 1) is an odd integer. As a result, the peripheral vortices rotate about the
center of the beam when the relative phase ¢ is changed.

2. Case €1 = —¥s:

o When I; > I, there is a central vortex of charge ¢; with no peripheral vortices.

e When I} = I there is no central vortex, no peripheral vortices, but 2|¢;| radial shear singularities
located at angles given by Eq. 2.

3.2. Non-integer Vortex Beams

A non-integral vortex beam of overall charge ¢ can be generated either by passage through a phase-plate of
non-integral topological charge € or via first-order diffraction off a forked diffraction grating with a non-integral
dislocation of magnitude €. The characteristics of such a beam are summarized below.

¢ The intensity pattern consists of one or more broken concentric rings.
e When ¢ is not a half-integer the number of vortices inside the ring is ¢ rounded to the nearest integer.

¢ When ¢ is a half-integer the number of vortices inside the ring is ¢ rounded down to the nearest integer.
In addition, the cut on the ring contains a chain of singly-charged vortices of alternating sign, with the
closest one to the center of the beam, hereafter called the chain leader, having the same sign as £.

¢ The orbital angular momentum of the beam varies nonlinearly with ¢

4. RESULTS

In studying the composite beams as a function of the variables at hand we considered composites with all possible
combinations of component beams: ones with one component beam with an integral charge and the other one
with a non-integral charge, and others where both components had non-integral charge. We also considered
half-integer and non-half-integer component beams.



4.1. Intensity Dependence

Figure 2 shows interferograms of the composite vortices created when one component beam had the charge
ly = +2.5. In the top row we show the case when the other beam had a charge ¢, = —1, and in the bottom row
the case when the other beam had a charge ¢; = +1. The columns correspond to different normalized intensities,
as labeled in the figure. We took more interferograms, but the frames shown in the figure are representative of
the essential phenomena.

The vortices in the interferogram can be found by locating the forks in the fringe pattern. The direction of
the tines of each fork allows us to identify the sign of the vortices. In the case of Fig. 2 forks with tines pointing
to the right have a positive charge and conversely, forks with tines pointing to the left have a negative charge.
The sign of the charge determines the direction, clockwise or counter-clockwise, in which the phase advances
when going on a circular loop around the phase singularity. The two frames on the left-most column correspond
to beams with ¢; = —1 (upper frame) and ¢; = +1 (lower frame). On the right-most column we observe the
patterns of €5 = +2.5, which show two “+1” vortices in the central region and an additional “41” vortex on the
left side breaking an otherwise continuous ring, as is typical of a half-integer vortex beam.

In both cases we observed the same consistent pattern, which is similar to the case of integral component
beams. Let us first focus on the case of the top row. As we decrease I1 /I, going from left to right in the figure,
we see three “417 vortices with roughly equal angular separation enter the composite beam from the periphery.
We also observe an additional “41” vortex appear on the upper left side of the composite beam. However, the
latter vortex does not move much once it appears. It remains in the periphery until the beam is made up only
of the non-integral component. We interpret this vortex as the one leading the chain of vortices of alternating
sign that is typical of half-inter vortex beams.®™®

What is interesting about the observed pattern is the different roles or paths followed by the three peripheral
and the vortex-chain leader. The three peripheral vortices play the same role as in the case of the composite
beam with integral components. That is, they move in and out as a function of the relative intensity. The
chain-leader vortex and presumably its accompanying chain (see below) play a different role. They basically
appear or disappear, and when present they do not seem move much as the intensity ratio is changed.

The case of the bottom row of Fig. 2 is similar. When looking at the sequence of frames from left to right
we see two vortices appear on the left side, one, the peripheral vortex, moves all the way to the center as the
intensity ratio is decreased. The other one, the chain leader, moves up to the edge of the pattern and stays
there. The chain of alternating vortices is not seen in the figure due to the orientation and resolution of the
fringe pattern, but we believe they are there. We study them in more detail in Sec. 4.3.
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Figure 2. Interferograms for the case when the component beams had charges €2 = +2.5 and ¢; = 1. The normalized
intensities of the component beams I/ are given on top of each column.
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Figure 3. Interferograms for the case when the component beams had charges ¢2 = +2.5 and £1 = —1, and when their
intensities were the same (i.e., /1 = I2). The phase between the two component beams was varied from left to right on

roughly equal intervals.

In most cases the number of peripherals was consistent with [¢; — ¢;| rounded to the nearest integer. For
example, when ¢; = —2/3 and ¢, = +8/3 we saw three peripheral vortices, and when ¢; = 4+2/3 and ¢ = +8/3
there were two. The exceptions depended on the specific values of €; and €. The case of Fig. 2 was one. Since
the center of the beam with £ = 42.5 has two central vortices, only three peripheral vortices are needed to
convert the center of the beam from £ = —1 to one with ¢ = 42.5.

4.2. Phase Dependence

We also studied the dependence of the patterns on the relative phase between the two component beams. We
varied the phase by mechanically pulling the mount of one of the mirrors of the interferometer. Alternatively
we applied a voltage to a piezo electric ceramic placed as a spacer in a translation stage where one of the
interferometer mirrors was mounted.

In the patterns shown in Fig. 3 we adjusted the intensity of the component beams to be the same. As we
varied the phase between the component beams we see that the peripheral vortices rotate about the center, as
is the case for integral components. However, the vortex-chain leader does not rotate. We do not see a doubly-
charged vortex when one of the peripherals comes to the location of the vortex-chain leader. Perhaps the chain
of alternating vortices is not strong enough to survive the phase warping effected by a peripheral vortex located
in the neighborhood.

The peripheral vortices and vortex-chain leader mark the pattern via dark regions (i.e., the darkness associated
with the phase singularities). We could distinguish them by varying the phase §. As a consequence, the peripheral
vortices and their associated dark regions rotated but the vortex-chain leader did not rotate. In some cases the
vortex chain region appeared as a region of sheared phase with no clear fork standing out.

In cases where both components had a fractional charge we had to use the rotation of the pattern to help
identify the peripheral vortices. These cases were not clear cut. For example, when ¢; = —1.5 and ¢, = +5/3 we
saw several darkened regions that rotated with forks in all but one of them. It seemed that the darkened region
with no forks was a place where an incoming peripheral vortex of one sign canceled a central one of the other
sign. In cases where the non-integral part of ¢; was greater than 0.5, such as the case of ¢ = 5/3 and 5 = —8/3,
we saw one of the central vortices exit the beam through one of five darkened regions as I; /I was decreased.

The investigation of beams with ¢; = —{5 was far more complicated than expected. When I; = I3 the beam
pattern included regions of shear phase singularity that rotated with §, as for the case of integral components.
The number of these regions depended on ¢;. For example, Fig. 4 shows in frame (a) a composite with four
darkened regions when ¢; = 1.5. Conversely, frame (b) shows a composite with five darkened regions when
¢, = 8/3. The darkened regions moved over by one position when 4 increased by 2w. Depending on the values
of ¢1 and ¢y the darkened regions may have single vortices instead of a phase-shear region, or may not have any
vortex at all, as seen in Fig. 4. This is a case where an analytical theory could clarify the observations.



Figure 4. Interferograms for the case when the component beams had a fractional charge of the same magnitude: (a)

{1 = —4¥¢3=1.5 and (b) = —ls = 8/3. In both examples I1 = Is.

4.3. Half-integer Components

The composite beams that are obtained when the two beams are non-integral follow the same general rules as
above, although not precisely because the wavefront of the component beams is not uniform as in the case of
integral beams. Despite this we see a consistent pattern of peripheral vortices moving in and out of the composite
pattern when changing the ratio of intensities.

One question that remains is the fate of the infinite chain of alternating vortices that denote beams with
half-integral charge. Figure 5 represents an example of our effort in studying this case. The component beams
that we chose had their half-integer “cut” in opposite sides of the beam as seen in frames (a) and (c), which
correspond to beams with charge —1.5 and +2.5, respectively. The top row shows our raw interferograms. In
this case we put a fine fringe spacing to identify the vortex chains. In the bottom row we labeled the vortices that
we could identify. The middle frames (b) correspond to the case when the two components had equal intensity.

In the case of Fig. 5 we see that the chains of alternating vortices do not fizzle. The vortices of the chain
move around locally when the peripheral vortices are not near them. One can follow the paths of the vortices as
the intensity ratio is varied. Thus, we conclude that this case, although complex, continues to follow the general
pattern. We observed slightly different patterns of forks for different values of 8. Thus, the exact pattern of
chain-vortices is very sensitive to the location of the peripheral vortices. It is surprising to see that the chains
of alternating vortices do not totally disappear even though the beam is an even mixture of the two component
beams.

5. CONCLUSIONS

In summary, we have performed a study of the vortex patterns that are present in composite beams generated
when the two collinear component beams have topological charges that are non-integral. We observed the same
general features of the integral case: that peripheral vortices move in and out of the field of the composite pattern
as a function of the relative intensity of the component beams, and the rotation of these about the center of the
beam as the phase between the two beams is changed. The number of peripheral vortices was consistent with
|2 — ¢1| rounded to the neared integer, but there were exceptions, especially when the two components had a
fractional charge. Other cases where ¢; = —¥¢5 did not follow a clear rule.

In the case of half-integral vortex beams we saw the chains of alternating vortices move only slightly, deferring
the larger portion of the motion to peripheral vortices as the ratio of intensities was varied. We observed that
the chain of vortices of alternating sign disappeared only due to the local presence of a peripheral vortex.

Given the wealth of departures from the case of composite beams with integral components it is clear that
an analytical theory is needed for a better understanding of this problem.



Figure 5. Interferograms for the case when the component beams had charges £1 = —1.5 and £2 = +2.5. The center
column (b) corresponds to the case of equal intensity while the two ends correspond to each individual component, (a)
for ¢1 and (c) for ¢2. The top row has the raw patterns. In the bottom row we label the forks that we identified, with
tines pointing to the upper left (lower right) denoting positive (negative) topological charge.
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