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ABSTRACT

We report on the parametric study of composite-vortex patterns formed by displaced singly-ringed Laguerre-
Gauss beams. We find that rich structures of vortices appear and disappear as the phase, topological charge and
displacement of the component beams is varied. The net topological charge depends on various factors. When
the beams are collinear or nearly collinear the net charge is the largest topological charge of the two component
beams. When they are displaced by about one or more beam widths the net charge is the sum of the topological
charges of the component beams plus the charge of vortices created by the shear phases in the region in between
the two beams. The shear charges depend on the parameters of the problem. The experimental measurements are
consistent with the expectations, although the measured location of the vortices is not necessarily in agreement
with the predictions.
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1. INTRODUCTION

Optical singularities are rich features of optical fields. They manifest in both scalar and vector forms.1,2 Optical
vortices are some of the most interesting types of scalar singularities. They have found new types of applications
due to the orbital angular momentum that is carried by the optical field around them. In manipulation of matter
they have been used to transfer angular momentum to matter.1 They have also found use in the encoding of
information in both the classical3 and the quantal fields.4

Optical vortices are interesting because they allow the study of complex light beams from a different per-
spective. The study of their propagation has led to the discovery of interesting and unexpected dynamics, such
as loops and knots in the trajectory of the singularities as the light propagates.5–7 The beams that give rise to
these features are produced by superpositions of Laguerre-Gauss (LG) beams, solutions of the wave equation in
cylindrical coordinates.8

Our work has concentrated on the systematic study of the superpositions of two LG beams. Previously we
studied the superposition of collinear beams carrying optical vortices.9–11 In those studies, summarized in the
second section, we found rich dynamics in the formation of new optical vortices. More recently we studied their
propagation as the light went through a focal point.11 We found that as the light was focused, off axis vortices
rotated about the beam center due to the changing Gouy phases of the component beams.

In this article we report the study of composite-vortex beams that are generated when we add a new degree
of freedom: a lateral displacement between the component LG beams. A previous analytical and numerical
study of this problem for component beams with charges 0 and 1 showed that rich structures of vortices exist
in the composite beams.12 An important component of that work was to understand the values of the net
topological charge of the composite beam. In our work we extend those studies to higher topological charges of
the component beams. Our methods involve numerical modelings and experiments. Our findings broaden the
understanding of the problem: the composite beams and the vortices contained within depend on whether the
topological charges of the component beams have the same or opposite sign. Given this last important distinction
we devote separate subsections to each case. We find that in both cases the structure of vortices and the net
topological charge depends on the displacement and relative phase of the component beams.
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Figure 1. Schematic of the apparatus used to produce abd image the composite beams. The optical components include
non-polarizing beam splitters (BS), forked diffraction gratings (G(`)) of topological charge `, half-wave plates (HWP),
polarizers (P), neutral density filters (F) and beam expander (BE).

2. OPTICAL ARRANGEMENT

In this work we do measurements of the composite beams to determine the location of the vortices contained in
them. Since this setup is similar to previous ones,9 we will describe it only briefly. The apparatus consisted of
two nested Mach-Zehnder interferometers. Following Fig. 1, a vertically polarized helium-neon laser beam was
split by a non-polarizing beam splitter in the outer interferometer. One of the beams was expanded and made
interfere at an angle with the composite beam. This way it produced fringe interferograms, where the vortices
were identified via the forks in the patterns.

The light in the other arm went through an inner Mach-Zehnder interferometer for preparing the composite
beam. The light in each arm of the inner interferometer was incident on forked amplitude gratings with charges `1
and `2. First-order beams were then rerouted by the interferometer mirrors so that they exited the interferometer
parallel to each other. The polarization of the light going through one of the arms was rotated by π/2 via a
half-wave plate HWP1. After the interferometer the polarization of the light was rotated via a second half-wave
plate HWP2 and then projected to the vertical direction via a polarizer. We could vary the relative intensity
of the two beams by properly adjusting the orientation of HWP2. For all the experiments reported here HWP2

was oriented by π/8 relative to the horizontal so that the component beams combined with equal intensities.
One of the mirrors of the interferometer was mounted on a translation stage with a piezo-electric inserted as
a spacer. The beams were displaced by manually translating the stage. We adjusted the relative phase of the
component beams δ by applying a voltage to the piezo-electric. The composite beams and their interference with
the expanded reference beam were imaged with a CCD camera.

3. RESULTS

We will start the discussion by summarizing the results that are known for zero displacement of the component
beams. Two singly-ringed LG beams with topological charges `1 and `2 (|`1| < |`2|) combine collinearly to
produce a composite beam that has a central vortex of charge `1 surrounded by |`2 − `1| peripheral vortices of
charge σ2 = `2/|`2|.9 Small perturbations (i.e., the addition of a third weak beam) split the central vortex into
|`1| vortices of charge σ1 = `1/|`1|. The radial location of the peripheral vortices depends on the relative intensity
of the component beams: r = (w/

√
2)[(|`2|!I1)/(|`1|!I2)]

[1/2(|`2|−|`1|)], where I1 and I2 are the intensities of the
component beams. The angular separation of the peripheral vortices is 2π/|`2 − `1|. Their absolute angular



Figure 2. Schematic of the topological charges in the composite beam for the collinear and displaced cases (when
|`1| 6= |`2|). In the collinear case it consists of a central region of charge `1 surrounded by a region of singly-charged
vortices with a combined charge `2 − `1. In the displaced case there are three regions of vortices: around the center of
each component beam, and in the region in between the two beams due to the shear in their phases.

location depends on the relative phase between the component beams9: φ = (δ + nπ)/(`2 − `1), where n is an
odd integer. Since the topological charge of the central vortex is `1 and the combined charge of the peripheral
vortices is `2 − `1 then the net topological charge of the beam is `net = `2. This is shown schematically in Fig. 2.

When the beams are infinitely displaced their combined charge is `sum = `1+`2 . However, for finite separations
the net topological charge is in general not `sum. This is because new phase dislocations appear if the phases
of the two beams do not match up in the region between them. This phase mismatch is minimum when the
component beams have topological charges of opposite sign. Conversely, when the topological charges of the
component beams have the same sign, it is rather likely that there will be dislocations in the region between the
beams. As depicted in Fig. 2, the region in between the two beams will in general contain shear charges with a
net charge `shear. In the following subsections we consider the two cases in detail.

3.1. Case σ1 = −σ2

In this case the component beams have topological charges with opposite signs. We begin with a rather unique
sub-case: when the component beams have equal and opposite charges (i.e., `1 = −`2). When the two beams
are collinear and have equal intensities we get a mode that contains no vortices but 2|`1| π-phase singularities
angularly equidistant from each other. These shear singularities become vortices for infinitely small displacements
of the two beams. As the displacement is increased from zero the vortices appear at the same angular locations
as the shear singularities when the beams are collinear. They appear at a radial distance from the beam center
equal to the radius of the beams (r = w

√

|`1|/2, where w is the beam width).

We can understand this result with the following argument. As the displacement is increased the two beams
stop sharing regions of equal phase. Thus, the regions of destructive interference cease to be radial lines and
become points. The vortices occur where the amplitudes are the same and the phases off by π, which occurs near
the ring maximum. Vortices of the same sign are adjacent to each other. The number of vortices is then 2|`1|,
with half being of charge σ1 and the other half of charge σ2. Row (a) of Fig. 3 shows three frames describing
the case when the component beams have topological charges `1 = 2, `2 = −2; a relative phase δ = 0 and a
displacement ε = 0.1w. In this figure the left frames show a calculation of the gray-scale-coded phase map of the
composite beam. The middle frames show the calculated intensity profile. The measured interferograms of the
two beams are shown in the right frames. We have labeled the vortices that we identified in the interferograms
with the symbols “◦” and “×” to denote topological charges +1 and −1, respectively.

The simulations of row (a) in Fig. 3 were done for the nearly collinear condition, where the displacement was
ε = 0.1w. The expectation was then to see two +1 charges on the left side of the image and two −1 charges



Figure 3. Numerical simulations of the phase (left column) and intensity (middle column) of the composite beams for
cases where the component beams were `1 = −`2 = 2. Interferograms of the corresponding patterns are in the right
column, with the location of vortices of charge +1 and −1 labeled by ◦ and ×, respectively. Rows (a)-(c) correspond to
cases where δ = 0 and the displacement is ε = 0.1w (a), ε = 0.3w (b), and ε = w (c). Row (d) corresponds to δ = π and
ε = w.

on the right side. This is not what was observed. However, we can explain this. Since this was very near the
collinear condition a small unwanted vertical displacement changed the position of the vortices to the positions
shown. Once the horizontal displacement increased to larger values (lower frames), then the vortices did appear
at the expected locations.

If δ = 0 for `1 even or δ = π for `1 odd, then the net charge of the composite beam remains `sum = 0 as
the displacement is increased beyond the sum of the beam widths. One side of the composite will have |`1|
vortices and the other side will have the same number of vortices with opposite sign. This is shown in rows (b)
and (c) of Fig. 3, which correspond to the case δ = 0 and an increasing displacement. The pattern and phases
are confirmed by the interferograms of Fig. 3. In the region between the component beams the phase increases
smoothly. This harmonious coexistence of the two component beams can be thought of as the analog of a pair
of mechanical gears with their teeth matching up as they turn. This is illustrated in row (a) of Fig. 4, where
we show a series of simulations of the phase map with increasing overall phase α of the two beams. Although
the absolute phase is in general an irrelevant parameter, in the simulations it defines the location of the gray
levels, allowing us to appreciate the phase structures generated by the two beams. The measurements for the
cases of rows (b) and (c) in Fig. 3 are in general consistent with the simulations. The locations of the vortices
are in the general area where they are expected. Slight discrepancies are due to imperfections of the wavefront



Figure 4. Numerical simulations of the phase of the composite beams for ε = 1.5w, as a function of the overall phase α
of the two component beams. The cases shown are: (a) `1 = +2, `2 = −2, δ = 0; (b) `1 = −2, `2 = +3, δ = 160◦; (c)
`1 = +2, `2 = +3, δ = π/2.

of the beams. The reference beam used to produce the fringe patterns also acts as a perturbation that changes
the positions of the vortices.

If the phase difference between the two beams for this case is changed to be near δ = π the situation
changes. There will be a stressful region of phase in between the beams giving rise to either shear regions or
pairs of oppositely-charged vortices. The net charge of the composite will still be `sum = 0. This is shown in
the simulation of row (d) in Fig. 3. The interferogram shows an extra vortex in the upper middle part of the
composite. In the lower part we were not able to identify a clear vortex, but noticed a region with a π-phase
shear, denoted by the dashed line. A vortex could still be below it, but the beam was too weak to locate it.

When |`1| 6= |`2| the beam in the collinear situation contains |`2 − `1| + 1 vortices. As the displacement is
increased the central vortex of charge `1 splits into |`1| singly charged vortices, and then the beam has |`2−`1|+|`1|
vortices: |`2−`1| of charge σ2 and |`1| of charge σ1. If |`1| and |`2| differ by one or two, and if δ has a proper value,
then when the beams are fully displaced there are |`1|+ |`2| singly charged vortices in the composite beam (i.e.,
with no shear vortices). What is interesting here is the transition: when going from collinear to non-collinear
|`1| vortices of charge σ2 disappear. An example of this for the case `1 = −2, `2 = +3 and δ = 0 is seen in the
transition from row (a) of Fig. 5, for ε = 0.1w, to row (b) of Fig. 5, for ε = w. How this transition occurs is
rather interesting. Often a pair of vortices is created as the displacement is increased, with vortices with charge
σ1 annihilating the peripheral vortices of charge σ2, and with the created partner moving out to radial distances
that increase as the displacement is increased. Depending on the parameters the peripheral vortices may just
move out of the beam as the displacement is increased. For the case of row (b) of Fig. 5 two of the peripheral
vortices just moved away. The measurements show the disappearance of two +1 vortices (i.e., circles) in the
transition from ε = 0.1 (row (a)) to ε = w (row (b)).

For most other values of δ shear singularities or vortices appear in the region in between the component
beams. Row (c) of Fig. 5 shows one such case, for `1 = −2, `2 = +3, δ = π and ε = w. The measurements are
somewhat consistent with this, as they show one oppositely charged vortex in between the two beams in addition
to the three +1 and two −1 charges. The simulations predict the same number of vortices, but the experimental
measurements do not find them exactly in the predicted locations.

It is difficult to specify a general rule since the outcome depends on the specific values of the parameters `1,
`2, δ and ε. However, we can single out one rule that appears to remain: the sign of the shear vortices is the same



Figure 5. Numerical modeling of the phase (left column) and intensity (middle column); and measurements (right
column) of composite vortices. The cases shown are: (a) `1 = −2, `2 = +3, δ = 0 and ε = 0.1w; (b) `1 = −2, `2 = +3,
δ = 0 and ε = w; (c) `1 = −2, `2 = +3, δ = π and ε = w; (d) `1 = `2 = +2, δ = π and ε = w; (e) `1 = `2 = +2, δ = π
and ε = w; (f) `1 = `2 = +2, δ = π/2 and ε = w;



as `1. This is because the phase of a beam with charge `2 varies faster than the phase of the beam with charge
`1. This is illustrated in the phase maps of row (b) in Fig. 4, where it can be seen that the phase mismatch
between components with `1 = −2 and `2 = +3 causes a phase vortex of charge −1 in the region between the
beams.

For the latter case, where there is one shear singularity of charge `shear = −1, the transition from collinear
to displaced involves the disappearance of |`1| = 2 charges with σ2 = +1 and the appearance of a charge with
σ1 = −1. This is a net change of the net topological charge by |`1| + |`shear| = 3.

3.2. Case σ1 = σ2

In this case the component beams have topological charges of the same sign. This case is quite complex because
shear vortices are easily created in the region between the beams. If we ignore the shear vortices for a moment,
as ε is increased from zero the composite pattern evolves from `1 central vortices and |`2− `1| peripheral vortices
to |`1| + |`2| vortices when the beams are displaced. Thus, at least |`1| vortices must appear in the transition.
However, that transition also generates shear vortices of charge −σ1. The number of shear vortices depends on
the specific values of the parameters.

The simulations of row (c) in Fig. 4 show the phase maps for `1 = +2 and `2 = +3. One can clearly see two
shear vortices with their sign opposite to that of the component beams. The change of the phase makes it clear
how the shear vortices have the opposite sign. In that simulation we picked a value of delta close to π, at 160◦.
We did this because for δ = π there is a shear singularity and no vortices.

The case of `1 = `2 = +2 is an interesting one because the number of shear vortices depends on the relative
phase of the component beams (i.e., δ). Rows (d), (e) and (f) of Fig. 5 show the cases where δ = 0, δ = π and
δ = π/2, respectively. We see that when δ = 0, π there is only one phase singularity in the numerical simulations,
while for δ = π/2 there are two. In the first two cases the measured number of vortices is in agreement with
the predictions, but their location is quite different. We cannot say with confidence whether this is due to the
perturbing action of the reference beam or any other experimental systematic effects, such as misalignments or
imperfections in the wavefront of the component beams. For the case where the simulations predict two vortices
we see only one–the lower one. That the upper one does not show up should be no surprise because the beam
intensity is low in the region where it is expected and is consequently difficult to image. Besides this discrepancy
the experimental measurements do confirm the general features of the numerical modelings.

4. SUMMARY AND DISCUSSION

In summary, we have presented a new study of the composite-vortex patterns that arise when singly-ringed LG
beams bearing optical vortices are combined together. The present study extends a previous study of collinear
component beams to the case when the beams are parallel but displaced. We observe a number of interesting
features in this parametric study: that for a given set of topological charges of the component beams vortices
appear and disappear as the displacement is varied. The number and location of these vortices depends on the
topological charges of the component beams and the relative phase between them. Presumably they also depend
on the relative intensity of the two beams, but we did not performed that study.

There is a situation that may be of interest to investigate: when displaced vortices are focused by a lens.
In this situation two component beams that are displaced will be steered to the focal spot where they will
be a concentric and nearly collinear. After the focal spot the beams will diverge and become displaced again.
In addition, the phase difference between the two beams will change due to the different Gouy phases of the
component beams. We then envision a very rich situation where as the light propagates vortices are created
and annihilated, and as they do this they rotate about the beam axis. It remains an open question whether
knots could be produced this way. It appears that longitudinal loops formed by the creation and annihilation of
vortex pairs of opposite sign will be present. The prospect of such interesting propagation dynamics makes this
situation worthy of future study.
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