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Abstract: We study the propagation of off-axis vortices in a paraxial beam
formed by two collinear Laguerre-Gauss beams. We show that the vortices
move about the beam axis as the light propagates resulting in a rotation of
the beam’s transverse profile. This rotation is explained by the Gouy phase
acquired by the component beams. Experimental measurements of the an-
gular position of the vortices are in good agreement with a two-mode theory.
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1. Introduction

The study of optical singularities offers new insights into the free-space propagation of complex
light forms. Optical singularities are unique and recognizable features that can be followed as
the light propagates. The study of their evolution has led to a new view of wave-fields and their
applications [1].

Of the many optical singularities exhibited by wave fields optical vortices are the most in-
teresting and fundamental. These are singularities in the phase of the light and thus represent
the absence of light. However, optical vortices are surrounded by a wave field whose phase
advances around the vortex, and whose associated wavefront carries orbital angular momentum
[1]. On-axis optical vortices, such as those carried by Laguerre-Gauss (LG) solutions of the
paraxial wave equation in cylindrical coordinates [2], seem to posses a propagation invariance:
they are always located on the beam axis. The phase around the vortex advances monotonically
and linearly with the azimuthal coordinate completing whole multiples of 2π in winding around
the beam axis. However, on axis vortices are perhaps the exception to a general rule, in which
the phase advances nonlinearly and where the vortices are not on the beam axis and move about
it as the light propagates. These more general cases can be produced by superpositions of LG
beams.

In recent years there has been much interest in optical vortex propagation, and in general,
in the propagation of optical singularities [3]. From a fundamental perspective they enable the
study of phase singularities in a more dynamical context [4, 5], where twists, loops and knots in
the path of the vortices have been shown to appear [6, 7, 8]. The applications of optical vortices
are intriguing and interesting, from the manipulation of objects in optical tweezers [9] to the
encoding of information [10, 11].

In this article we study the simplest scenario of dynamical propagation of off-axis optical
vortices. We will show that in composite beams formed by collinear superpositions of LG
beams, off-axis vortices appear [12], and upon propagation these move about the beam axis
consistent with a rotation of the beam profile. The motion of these off-axis (hereafter called
peripheral) vortices can be well explained by the Gouy phase. This is the phase that a wave
acquires as it changes its radius of curvature due to diffraction.

The above mentioned rotation of the beam can also be used as a new way to measure the
Gouy phase. The Gouy phase of optical beams can be observed by interference: superposing
a fundamental Gaussian beam going through a focal point with a plane wave [15]. The Gouy
phase shift clearly manifests itself when few-cycle pulses go through a focal point [17, 18]. In
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recent years high-order optical modes have been used to measure the Gouy phase. Basistiy et
al. observed the angular motion of vortices generated by a binary grating containing two phase
dislocations [21]. More recently Chow and coworkers made a precise measurement of the the
Gouy phase via interference of fundamental and first-order Hermite Gauss modes [16]. The
observed rotation of truncated beams with a definite high-order-mode helicity has also been
linked to the Gouy phase [19, 20]. Our work in this article can be more closely connected to the
work of Basistiy et al. [21], with the difference that we study the actual superposition of beams.

This article is divided as follows. In Sec. 2 of this article we summarize the resulting vortex
patterns that are obtained when two collinear beams interfere. Then in Sec. 3 we discuss the
propagation of these patterns and their connection to the Gouy phase.

2. Composite vortices

Recently we initiated the study of the pattern of vortices that arises in the collinear superposition
of component LG beams with integral [1, 12] and non-integral [13] topological charges (see
also Ref. [14] for related work). Below we give a summary of the results for integral vortices.

When two optical beams in LG eigenmodes are superimposed collinearly they generate a
pattern of vortices that depends on the relative amplitude and phase of the component beams.
LG modes have circular symmetry; a general LG mode has p radial nodes in its amplitude. In
the present work we will limit ourselves to singly-ringed modes with p = 0. The amplitude of
singly-ringed LG modes with topological charge � can be expressed as [2]

μ� =
(

2
π|�|!

)1/2 1
w

(
r
√

2
w

)|�|
e−r2/w2

e−i�φ ei[kz−kr2/(2R)]eiϕ , (1)

where r, φ and z are the cylindrical coordinates, w is the beam radius, k is the wave number,
R is the radius of curvature of the wave-front, ϕ = (N + 1) tan−1(z/zR) is the Gouy phase,
and zR is the Raleigh range. The order N for a general LG mode is defined as N = 2p + |�|.
Equation (1) represents a subset of the Laguerre-Gauss family of modes that has a distinct
intensity profile consisting of single a ring, or “doughnut.”. At the center of the ring is a phase
vortex of topological charge �. The radius of the ring, defined by the distance from the center
to points where the intensity is maximum is given by

ρ =

√
�

2
w. (2)

Consider now the superposition of two collinear component beams with topological charges
�1 and �2. The total amplitude can be expressed as

μT = sinθ μ�1 + cosθ μ�2eiδ , (3)

where δ is the relative phase between the two beams. The ratio of the amplitudes of the two
component beams is specified by

α =
√

I1

I2
= tanθ , (4)

where I1 and I2 are the component-beam intensities. There are two distinct cases of beams
created in this way.
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Fig. 1. Numerical calculation of the composite-vortex pattern generated by combining two
Laguerre-Gauss beams with �1 = −1 and �2 = +4. In (a) the computed composite vortex
pattern can be viewed by the color-encoded phase map of the light pattern. Circular symbols
denote the position of the vortices, where a positive charge denotes a counter-clockwise
increase in the phase. The intensity pattern is shown in (b) in grey scale.

2.1. Case |�1| < |�2|
The resulting composite-vortex beam has a very characteristic form, shown in the phase map
of Fig. 1(a). It contains a vortex of charge �1 in the center of the beam surrounded by |�1 − �2|
singly charged peripheral vortices of sign σ2 = �2/|�2| located at the same radial distance

rv =
w√
2

( |�2|!
|�1|!α2

) 1
2(|�2|−|�1|)

(5)

from the center of the beam. These vortices are evenly distributed at angles

φv =
δ +nπ
�2 − �1

, (6)

where n = 1 . . .(2|�1−�2|−1) is an odd integer for each of the peripheral vortices. This pattern
of vortices arises because the intensity radii of two modes is different (i.e., see Eq. (2)). The
shear in the phase of the two modes located at different radii creates the peripheral vortices.
To understand this consider the case where the amplitudes of the component beams are the
same: α = 1. The inner region I is dominated by the beam with �1, where |μ�1 | > |μ�2 |, and
conversely, the outer region II is dominated by the beam with �2 (i.e. where |μ�1 | < |μ�2 |). The
boundary between the two regions is a circle of radius rv. That is, the peripheral vortices are
located precisely at the boundary region of intensity dominance of the two modes.

The vortices are located at the angles φv were phases of the dominant modes �1φv and �2φv at
each side of the boundary differ by an odd multiple of π . Indeed it is trivial to show that Eq. (6)
arises from �2φv−�1φv−δ = nπ . Figure 1(a) shows the computed phase of the composite vortex
pattern for the case where �1 = −1 and �2 = +4. The adjacent figure shows a computation of
the corresponding intensity pattern.

In the laboratory we can vary two parameters: the relative amplitude of the two beams α and
the phase between them δ . As α is varied the boundary between regions I and II changes and
consequently the peripheral vortices move radially in(out) as α decreases(increases).

We studied this in the laboratory using the setup shown in Fig. 2. Light from a HeNe laser was
sent to two nested Mach-Zehnder interferometers. Light going through one of the arms of the
outer interferometer was expanded and used as a reference beam. With this beam we created
fringe interference patterns with the composite beam that allowed us to locate the vortices.
Light going through the other outer arm went to an inner interferometer. This interferometer
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Fig. 2. Schematic of the apparatus used to study composite vortices. Polarizers [P(α)] and
half-wave plates [Wλ/2(α)] oriented an angle α relative to the horizontal are used to control
the relative intensity of the interfering beams. Two forked binary gratings [G(�)] of charge
� are used to prepare the component beams. A beam expander (BE) and neutral density
filter (F) are used to prepare a reference beam. Non-polarizing beams splitters (BS) are
used to split and combine the light.

was used to prepare the composite beam via forked binary gratings G(�) of topological charge �
located past the output ports of the first beam splitter. Mirrors following the gratings steered the
light to the second beam splitter. One of the mirrors was mounted on a translation stage with a
piezo-electric ceramic placed as a spacer. By applying a voltage to the piezo-electric element
we were able to adjust the phase δ between the two interfering modes.

The ratio of amplitudes α was adjusted via the polarization of the light [12, 13]. The light
entering the interferometer was linearly polarized in the vertical plane. A half-wave plate
Wλ/2(45◦) with its fast axis forming an angle of 45◦ with the horizontal was placed in one
of the arms of the interferometer to rotate the plane of polarization of the light to the horizon-
tal plane. Thus, the two beams emerged from the interferometer with orthogonal polarizations.
After the interferometer we had a half-wave plate (Wλ (θ/2)) with its fast axis oriented at an
angle θ/2 relative to the horizontal followed by a polarizer with its transmission axis along the
vertical direction. This arrangement allowed us to set the intensity ratio via the setting of θ and
Eq. (4).

The composite beam was steered to a charge-coupled-device (CCD) camera where it inter-
fered with the expanded reference beam. The top two rows of Fig. 3 show false-color interfer-
ograms of the composite beams corresponding to �1 = −1 and �2 = +4. Careful inspection of
the figures reveals the presence forks in each of the dark regions. (Per the preceding discussion,
we have a vortex with charge −1 in the center of the beam, and five vortices of charge +1 dis-
tributed symmetrically in the periphery.) The vortices are located at the fork dislocations in the
fringe interference pattern of Fig. 3. The first row of frames shows interferograms for several
values of θ = tan−1 α in increments of π/8 but with a fixed value of δ . The left most frame,
which corresponds to the case θ = 0, consists of a purely �2 = +4 beam; the middle frame
corresponds to the case θ = π/4 (i.e., equal component-beam amplitudes), and the right-most
frame corresponds to the case θ = π/2, where the beam is purely the �1 = −1 component. It
can be seen that the peripheral vortices move outwards as θ is increased. Notice that the tines of
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Fig. 3. Image of composite beam patterns as a function of experimental parameters. The
first row and (Media 1) show the composite beam as a function of the relative amplitude α
of the component beams with �1 = −1 and �2 = +4. α is specified by the θ via α = tanθ .
The second row and (Media 2) show the composite as a function of the relative phase δ of
the component beams with �1 = −1 and �2 = +4, and α = 1. The third row and (Media 3)
show the composite beam as a function of θ for �1 = +3 and �2 = −3. The fourth row
and (Media 4) show the composite beam as a function of δ for �1 = +3 and �2 = −3, and
α = 1.

the central and peripheral forks point in opposite directions. This denotes their opposite charge
[22]. The curving of the intensity lobes is due to slight differences in the radii of curvature
between the component beams. The accompanying video (Media 1) shows a more complete
sequence: the radial motion of the peripheral vortices for a continuous change in θ .

The set of frames in the second row of Fig. 3 shows the composite pattern as δ is changed
while α is kept fixed at 1. Following Eq. (6), if we increase δ by Δδ the pattern will rotate by
Δφv = Δδ/(�2 − �1). Thus, for the case of the figure (�1 = −1 and �2 = +4), a change in phase
by Δδ = 2π corresponds to a rotation of the composite by 2π/5 or 72◦. An accompanying
video (Media 2) shows the motion of the pattern for a continuous change in the phase delta.
(The initial phase in the video was set to zero for labeling convenience.) The rotation of the
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peripheral vortices about the center of the beam has been referred to as the “optical Ferris
wheel” [14].

2.2. Case �1 = −�2

This second case is unique because it is an exception to the general case: the composite beam
contains no peripheral vortices for any of the relevant parameters. When α = 1 there are 2|�1|
angular nodes symmetrically distributed about the beam axis at angles φs = φv, where φv is
given by Eq. (6). At the nodes we have shear phase singularities, where the phase abruptly
switches by π . For cases where �1 is 1 and 2 the resulting modes are the Hermite-Gauss modes
HG01 (or HG10) and HG11, respectively [23]. For higher orders, the resulting patterns are no
longer Hermite-Gauss eigenmodes. When the amplitudes of the component beams are not the
same the phase at the nodes varies continuously. In these cases the center of the beam contains
a vortex with the same charge as the beam with the greater amplitude. Computer simulations
that we have done show that the rate of change of the phase decreases as α varies away from 1.

The third and fourth rows of Fig. 3 show the composite pattern when �1 = 3. In the third row
θ is changed in increments of π/8 while keeping δ fixed. The left-most and right-most frames
are the beams with �2 = −3 and �1 = +3, respectively. In the middle frame both component
beams have equal amplitude. One can see the π phase difference between adjacent lobes by the
discontinuous shift in the fringes from lobe to lobe. The fourth row shows composite beams
taken for different values of δ in increments of 2π/5 for α = 1. Following an argument similar
the previous case, we can see that the rotation of the pattern follows δ/2�2. Accompanying
videos, (Media 3) and (Media 4), show the same patterns for continuous change of θ and δ ,
respectively.

3. Gouy rotation

The previous results present symmetrical patterns in light beams that rotate as the dynamical
phase between the component beams is varied. These are patterns that can be seen on a screen
or camera placed in the path of the light. In general these patterns rotate about the beam axis
as the beam propagates. This occurs via the Gouy phase difference between the component
beams.

The Gouy phase for LG beams of topological charge � and radial mode p is given by

ϕ = (2p+ |�|+1)ξ , (7)

where ξ = tan−1(z/zR) with zR being the Raleigh range.
When accounting for the Gouy phase of singly-ringed (i.e., p = 0) component beams the

angular position of the peripheral vortices is

φv =
δ +nπ +(|�2|− |�1|)ξ

�2 − �1
. (8)

If we maintain the dynamic phase δ constant, the angular change in the vortex position between
two points along the beam propagation direction is

Δφv =
|�2|− |�1|
�2 − �1

Δξ (9)

We can subdivide this situation into three cases. Case (i) is when |�1| �= |�2| and σ1 = σ2. In this
case

Δφv = σ2Δξ . (10)
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Fig. 4. Schematic of the section of the apparatus used to measure the rotation of the beam
as a function of the propagation distance. The composite beam is focused by a lens (L). A
reference beam is expanded by a beam expander (BE) and combined with the composite
beam via a beam splitter (BS) so to form a fringe pattern on the CCD camera.

Case (ii) is when |�1| �= |�2| and σ1 = −σ2, which results in

Δφv =
|�2|− |�1|
|�2|+ |�1|σ2Δξ . (11)

This case reduces to the previous one when �1 = 0. The maximum rotation of the beam is π
when Δξ = π . In this second case the rotation reduces as |�1| increases up to |�2|. Case (iii) is
the limiting case, where |�1| = |�2|. In this case there is no rotation:

Δφv = 0. (12)

For case (i) the combination of the angular rotation of the vortices and the expansion of
the beam due to diffraction leads to straight-line trajectories in three dimensional space. This
is due to the z-dependence of the radial and angular position of the vortices, given by rv ∝ w
with w = w0(1 + z2/z2

R) (see Eq. (5); w0 is the waist) and tanΔφv = ±z/zR (see Eq. (10)),
respectively. This type of vortex trajectory was studied analytically and numerically in Ref. [5]
for two situations that fall under case (i), but using a model that consists of the product of
a vortex function with a Gaussian background [4]. However, for case (ii) above the vortices
do not describe such straight-line trajectories. This is because tanΔφv �= ±z/zR. Instead they
describe trajectories that are twisted hyperbolas of shape that depend on the relation between
Δφv and Δξ in Eq. (11).

We made detailed measurements of the beam rotation for the case where �1 = 0 and �2 = 2.
This case is most suited for our purpose since it has two peripheral vortices on opposite sides
of the beam axis and with no central vortex. Thus, the line joining the two vortices serves to
measure the rotation of the beam. This is also a case where the composite beam achieves the
maximum rotation. The apparatus that we used to do these measurements is shown in Fig. 4.
We used a 1-m focal length lens to focus the light, and imaged the beam pattern along the
propagation direction with a CCD camera mounted on a plate sitting on an optical rail. Also
mounted on the plate where a mirror and beam-splitter. They were used to send an expanded
reference beam also to the camera for producing interferograms. We located the vortices via
the forks in the interferograms–we found that the use of the dark regions of the composite
pattern unreliable for this purpose. The orientation of the line joining the vortices was used as
a measure of the beam rotation.

Figure 5 shows our data taken for the range of values of z accessible to us. The function
ΔφF tan[(z− z0)/zR] + Δφ0 was fit to the data. We obtained ΔφF = (0.98+0.37

−0.21)π in excellent
agreement with the expectation, i.e., π . The fitted values of the other parameters were z0 =
127±10 cm, zR = 23±14 cm and Δφ0 =−53◦. These have been incorporated into the graph so
that we can better appreciate it. The inserts show interferograms taken along the way, displaying
the rotation of the beam as the light goes through the focal point. The intensity of the light in
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the frames was adjusted to avoid saturating the CCD camera. We took several data sets like the
ones shown in the figure.

While the data of Fig. 5 shows reasonable agreement with the expected Gouy phase shift, it
does not perfectly follow the theoretical curve for values of (z− z0)/zR beyond 1. We noticed
that for those values the shape of the beam also changed from a well defined ring to a broader
one. As a consequence the radial position of the vortices was not as expected, but closer to the
beam axis. This may be due to small contributions of modes with � = 2 and p > 0 present in
the beam. These modes arise from the lack of purity in the mode generated by the first-order
diffraction of a zero-order Gaussian beam from the binary forked grating [24, 25]. As the beam
propagates through the focal point, the rephasing of these modes, which have a different Gouy
phases, may alter the shape of the beam and the location of the vortices, not accounted by the
two-mode theoretical curve.

We also tested the predictions for a variety of values of �1 and �2. Figure 6 shows two cases
taken with a slightly different setup. The composite beams were prepared with the setup of
Fig. 2. The component beams had equal amplitudes (i.e., α = 1). The composite beam was then
sent to a lens with a focal length f = 2.44m. The beam past the lens focused with a Rayleigh
range zR = 0.657m. We recorded images only from z = −zR to z = +zR, which amounted to
Δξ = π/2 for that interval. The first row of Fig. 6 corresponds to �1 = −2 and �2 = +4. In
these composite beams there are six peripheral vortices in between the “petals” of the pattern.
The observed rotation is Δφv = π/6, in agreement with the prediction given by Eq. (11) for
Δξ = π/2. (The direction of rotation of the imaged pattern differs from previous ones due to
an extra mirror in the setup.) The image rotated in the opposite direction when the signs of the
charges were reversed.

The set of images in the second row of Fig. 6 correspond to the case where �1 = 2 and
�2 = −2. We observe no rotation, as predicted by the theory. This is because both component
beams get the same Gouy phase (see Eq. (12)). This is also a case where the composite beam
exhibits no peripheral vortices.

Fig. 5. Graph of the data taken with the setup of Fig. 4. It corresponds to the rotation of
the beam with two peripheral vortices created by the superposition of �1 = 0 and � = 2
modes as a function of propagation distance when the light goes through a focal point. The
vortices were located by the forks in the interferograms of the composite beam. Inserts
show samples of the beam at different locations.
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Fig. 6. Images testing the predictions for the rotation of the beam profiles as the light went
through a focal point. The top row corresponds to a case where |�1| �= |�2|, while the second
row corresponds to the case where �1 = −�2.

4. Discussion

In summary, we have shown that off axis optical vortices formed by collinear superpositions of
LG beams move about the beam axis consistent with a rotation of the beam as it propagates.
The amount of rotation is in agreement with the rephasing of the wavefront of the component
beams due to Gouy phase. The results are also used as a measurement of the expected relative
Gouy phase of the component beams. The sense of rotation of the beam is determined by the
sign of the topological charge with largest magnitude.

In this study we have only considered collinear beams. When the beams are non-collinear a
much more complicated situation arises [26, 27]. This is because the beam displacement breaks
the cylindrical symmetry.

The composite beams that we have studied are part of a family of beams called “spiral-type”
for |�1| �= |�2| and “structurally stable” for |�1|= |�2| [28]. In these cases, besides from a change
in size of the beam, the intensity pattern of the beam is preserved upon propagation, twisting
as in the former case, or remaining constant for the latter case. It is interesting to inquire about
the propagation of more than two modes. For more than two modes more interesting effects
arise, such as the self-imaging or Talbot effect [28, 29], where the intensity pattern changes
upon propagation, but undergoes a series of self-imaging revivals at periodic intervals. What is
interesting is that a net chirality in the mode composition manifests as a rotation of the pattern in
the revivals [28]. Indeed, even when the mode composition is infinite, a net chirality manifests
in a rotation of the overall pattern [19, 20]. However, the trail of singularities for more than
two component beams has yet to be investigated thoroughly, as knots and loops in the vortex
trajectories [6, 7, 8] are a glimpse of their rich propagation dynamics.
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