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We present a study of Poincaré-beam polarization patterns produced by collinear superposition of
two Laguerre–Gauss spatial modes in orthogonal polarization eigenstates (circular or linear). We
explore theoretically and experimentally the combinations that are possible. We find that the resulting
patterns can be explained in terms of mappings of points on the Poincaré sphere onto points in the
transverse plane of the beam mode. The modes that we produced yielded many types of polarization
singularities. © 2012 Optical Society of America
OCIS codes: 260.5430, 260.6042.

1. Introduction

Poincaré beams have a spatial mode that correlates
transverse spatial coordinates with states of polari-
zation. The state of polarization may vary along one
coordinate. For example, in radial vector beams, the
state of linear polarization varies along the angular
coordinate so that the polarization direction at any
point is parallel to the radial direction [1–6]. The
state of polarization may depend on the two trans-
verse coordinates. This case, first referred to as full
Poincaré beams [7], in which the state of polarization
varies both in the angular and radial coordinates,
leads to a transverse mode that has all states of po-
larization, as represented on the Poincaré sphere.

In general, Poincaré and vector modes are nonse-
parable superpositions of spatial and polarization
modes. Past work on vector beams involved using
either the superposition of first-order Hermite–
Gauss modes with orthogonal linear polarization
or Laguerre–Gauss modes of the same order with
orthogonal circular polarization [3,8,9]. Both types

of construction involved the use of interferometers
to combine the two beams. Other approaches to gen-
erate vector beams involve intra-laser-cavity ele-
ments [1,4], external electro-optical or diffractive
optical elements [2,10,11], nonlinear elements [12],
optical fibers [13–15], or optical elements with stress
birefringence [7].

The applications of vector beams have been limited
to the simplest types of modes, radial or azimuthal
(linear polarization is perpendicular to the radial di-
rections), for use in either charged-particle accelera-
tion [16] or manipulation with optical tweezers [17].
The exploration of a greater variety of polarization
patterns offered by Poincaré modes, as presented
in this article, promises more applications in optical
manipulation and topological diagnosis of inhomoge-
neous media.

Poincaré beams are of intrinsic interest because
they carry polarization singularities. These are
points in space that are elliptic dislocations of a
vector field, in this case, the electromagnetic field
[18–21]. There have been a number of recent studies
on producing and measuring polarization singulari-
ties via passage of light through inhomogeneous bi-
refringent media [22–28]. Recent reports tailor the
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polarization-singularity analysis via production of
Poincaré beams [7,12]. With Poincaré beams we can
study these topological features by producing them
deliberately in the laboratory [29].

In this article we study Poincaré beams by ex-
ploring all possible combinations of high-order
Laguerre–Gauss modes that can be used to make
up distinct spatial-polarization modes and different
types of polarization singularities. We show methods
to produce Poincaré modes with single or multiple
mappings of the Poincaré sphere onto the transverse
plane of a light beam. Our experimental work focuses
on combining two pure Laguerre–Gauss beams colli-
nearly with an interferometer. Analytically, we ex-
plore all cases, including high-order radial modes.
In Section 2 we present a theoretical frame-
work for the description of Poincaré modes with
Laguerre–Gauss spatial modes. Section 3 describes
our experimental method. Our analysis of the Poin-
caré modes with our measurements is presented in
Section 4. These are subdivided in a way to highlight
important types of spatial-polarization patterns.
Section 5 has discussion and conclusions.

2. Theoretical Formalism

In this section we present a few definitions.

A. Spatial Modes

A Laguerre–Gauss mode with radial subindex p and
azimuthal index ℓ is given, in cylindrical coordinates
!r;ϕ; z", by [30]

LGℓ
p # Ap;ℓrjℓjeiℓϕGLjℓj

p Wp;ℓ; (1)

where

Ap;ℓ #
!

p!2jℓj$1

π!jℓj$ p"!

"1∕2 1
wjℓj$1 (2)

is a normalization constant;

G # e−r2∕w2 !3"

is the Gaussian envelope, with w being the beam
width (or spot); Ljℓj

p is the associated Laguerre func-
tion of 2r2∕w2; and

Up;ℓ # ei!x
2$y2"∕!2R"−iφ !4"

is a term containing overall phase information, with
R being the radius of curvature of the wavefront and

φ # !2p$ jℓj$ 1"tan−1!z∕zR" (5)

being the Gouy phase with zR the Rayleigh range.
The order of the mode is N # 2p$ jℓj. For practical
reasons we will consider the width of the beam
w # 1, and the phase term Up;ℓ # 1 for the remain-
der of this article. In Section 5 we discuss the effect
of Up;ℓ ≠ 1.

The modes with p # 0 are, with exception of ℓ # 0,
singly ringed with a peak at

rℓ #
!
ℓ
2

"
1∕2

: (6)

Modes with p ≠ 0 are multiringed. For example,
p # 1, ℓ # 0 modes have a maximum at r # 0, a
zero crossing at r # 1∕

###
2

p
, and another maximum

at r #
#########
3∕2

p
; whereas p # 1, ℓ ≠ 0 have a minimum

at r # 0 and two extrema (e.g., r # 0.47 and r #
1.51 for ℓ # 1) separated by a zero crossing
at r #

########################
!jℓj$ 1"∕2

p
.

B. Polarization States

For states of polarization, we are going to use an un-
common notation, so we present it here. The states of
polarization are represented by points on the Poin-
caré sphere, shown in Fig. 1(a). Any pure state of po-
larization can be represented in terms of the
coordinates on the sphere: the polar angle 2χ and
the azimuth angle 2θ. It is given by

êθ;χ # e$iθ cos χêR $ e−iθ sin χêL; (7)

where êR and êL represent the states of circular po-
larization, right (RCP) and left (LCP), respectively
[31]. Angle χ varies between 0 and π∕2. The useful-
ness of this representation is that the two variables, χ
and θ, specify the shape and orientation of the ellipse,
respectively. The ratio of the amplitudes of the polar-
ization components is related to the ellipticity of the
state by

ϵ #
b
a
# tan!π∕4 − χ"; (8)

where a and b are the semimajor and semiminor
axes of the ellipse, respectively. The orientation of
the ellipse, defined by the angle that the semi-
major axis forms with the x axis, is θ. Figure 1(b)
shows a grid pattern of states of polarization as a
function of χ and θ. A particular case of interest is
the state of linear polarization (LP) (χ # π∕4) or-
iented by an angle θ.

3. Experimental Method

We prepared Poincaré beams using a simple method,
shown schematically in Fig. 2(a). Light from a single-
spatial-mode helium–neon laser was sent to a polar-
ization interferometer. The input polarization was
set to be linear oriented at π∕4 with the horizontal.
A first polarizing beam splitter split the light by po-
larization. Amplitude binary forked gratings placed
in each of the arms, equidistant from the second po-
larizing beam splitter, encoded the spatial mode of
the two components of the Poincaré beam. The fringe
spacing of the two gratings was the same. This way,
the first-order modes from each grating overlapped.
These outputs constituted a class of Poincaré beams
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that were encoded with the linear polarization basis.
To encode the modes with the circular polarization
basis, we added a quarter-wave plate after the in-
terferometer, with its fast axis at π∕4 with the
horizontal.

We imaged the resulting modes with a digital cam-
era. As seen in Fig. 2, the intensity of the mode is
deceptively uniform, hiding rich polarization pat-
terns within. We diagnosed the polarization state
of the mode by passing the light through an arrange-
ment of wave plates and a fixed Glan–Thompson po-
larizer before the camera. A single half-wave plate
rotated by an angle β∕2 served, in conjunction with
the polarizer, as a linear polarizer analyzer oriented
by β.

We also had the option of adding a second half-
wave plate and a quarter-wave plate to block any de-
sired state of polarization and thus have an intensity
minimum appear in the imaged beam profile where
the light had the selected polarization state. The

arrangement is shown in Fig. 2(b). The advantage
of this method is that, by rotating the first half-wave
plate, we varied the orientation of the semimajor axis
of the selected elliptically polarized state and, by ro-
tating the second half-wave plate, we varied the el-
lipticity of the state via χ.

4. Poincaré Beams

We produced Poincaré beams by combining
Laguerre–Gauss modes with orthogonal polarization
states. We used two polarization bases: circular
!R;L" and linear !X;Y", but other elliptical polariza-
tion bases can be used [31]. A Poincaré mode pro-
duced this way has the form

Vp1;ℓ1;p2;ℓ2 #
1###
2

p !LGℓ1
p1e

iαêR $ LGℓ2
p2e

−iαêL" (9)

with the circular basis or

Wp1;ℓ1;p2;ℓ2 #
1###
2

p !LGℓ1
p1e

iαêX $ LGℓ2
p2e

−iαêY" (10)

with the linear basis.
We divide the results into three sets. The first two

consist of modes that have spatial modes with p # 0
in the circular and linear bases, and in the third case
we explore the modes for p ≠ 0. The first two are di-
vided into two important subcases: when ℓ1 ≠ −ℓ2
and ℓ1 # −ℓ2.

A. Circular Basis

1. Case ℓ1 ≠ −ℓ2
The expression for the Poincaré mode in the circular
basis is

V0;ℓ1;0;ℓ2 #
G###
2

p !A0;ℓ1r
jℓ1jei!ℓ1ϕ$α"êR $ A0;ℓ2r

jℓ2jei!ℓ2ϕ−α"êL":

(11)

This equation can be rewritten as

Fig. 1. (Color online) (a) Poincaré sphere showing how the states of polarization are represented on the surface of the sphere. (b) Matrix of
polarization states obtained by varying the amplitude (vertical) and phase (horizontal) between component circular-state modes [see
Eq. (7)]. Red and blue colors represent right-handed and left-handed polarization states, respectively, whereas black represents linear
polarization.

Fig. 2. (Color online) Schematic of the apparatus. (a) General
setup to produce and diagnose vector modes and (b) arrangement
to exclude specific polarization states. Optical components in-
clude forked gratings (G1 and G2), glass blank (B), polarizers
(P), half-wave plate (H), quarter-wave plate (Q), and digital
camera (C).
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V0;ℓ1;0;ℓ2 # NGei!ℓ1$ℓ2"ϕ∕2!eiθ cos χêR $ e−iθ sin χêL";
(12)

where

χ # tan−1 A0;ℓ2r
jℓ2j

A0;ℓ1r
jℓ1j

; (13)

θ # !ℓ1 − ℓ2"ϕ∕2$ α; (14)

andN is a normalization factor. Referring to the gen-
eral equation of the state of polarization, Eq. (7), the
polarization state for this mode has an ellipticity
[Eq. (8)] determined by χ in Eq. (13), which depends
only on r. If jℓ1j < jℓ2j, then when r → 0, the state of
polarization is right circularly polarized (i.e., χ → 0).
For values of r increasing from 0, the ellipticity de-
creases, with the polarization state remaining right
handed. At the radius

rv #
!
A0;ℓ2
A0;ℓ1

"
1∕!jℓ1j−jℓ2j"

; (15)

χ # π∕4, and the amplitude of the two spatial modes
is the same. Therefore, the state of polarization is lin-
ear. For r > rv the polarization is left handed, with
ellipticity decreasing and reaching −1 asymptotically
when r → ∞ (χ → π∕2). In the figures the handedness
is denoted by color (online only): red for right handed
and blue for left handed. Because the orientation of
the semimajor axis of the ellipse is given by θ in
Eq. (14), it depends only on ϕ. Figure 3 shows the po-
larization maps for two cases: (a) ℓ1 − ℓ2 # −1 and
(b) ℓ1 − ℓ2 # $1, where the semimajor axis of polari-
zation rotates clockwise and counterclockwise by half
a turn, respectively. When ℓ1 − ℓ2 # 2 (not shown
here; see [31]), the polarization pattern has a radial
look: the semimajor axis lies along radial lines.

Note also that the patterns correspond to a one-to-
one mapping of points on the Poincaré sphere to
points on the plane. When jℓ1 − ℓ2j # n > 1, the Poin-
caré sphere is mapped onto n sectors, so a given state
of polarization is mapped onto n points on the plane
in regular angular intervals. Going from r # 0 to r #

Fig. 3. (Color online) Polarization-state maps of the Poincaré mode obtained by combining spatial modes with (a) ℓ1 − ℓ2 # −1 and
(b) ℓ1 − ℓ2 # $1. In both cases, the spatial modes have p1 # p2 # 0, and the polarization of the component modes is circular. (c) Poincaré
sphere paths showing the sequence of states obtained by either increasing r with fixed ϕ or increasing ϕ with fixed r. (d) Images of the
Poincaré mode with ℓ1 # 0 and ℓ2 # 1 after passage through a polarization-state analyzer, with settings specified by χ and θ.
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∞ at fixed ϕ is equivalent to going from one pole of the
Poincaré sphere to the other through a meridian,
which is determined by ϕ, as shown in Fig. 3(c). Fol-
lowing the state of polarization in Figs. 3(a) and 3(b)
along a circle centered at r # 0 corresponds to follow-
ing a circular trajectory of constant latitude, as
shown in Fig. 3(c).

Passage of this mode through a polarization-state
analyzer, which blocks a unique state of polarization,
results in n minima. If we rotate the analyzer angle,
the minima rotate at the rate dϕm∕dβ # 2∕!ℓ1 − ℓ2".
To verify this case, we created a Poincaré mode with
ℓ1 # 0 and ℓ2 # 1. Figure 3(d) shows data taken with
the state analyzer of Fig. 2(b) where we set the ana-
lyzer to block a polarization state specified by χ and θ.
To simplify the diagnosis, we set the interferometer
phase so that α # 0. This way the radial and angular
coordinates of minima were given by rm # tan χ∕

###
2

p

and ϕm # −2θ. For the left–right sequence of images,
we selected the elliptically polarized state with ellip-
ticity ϵ # 0.47 (χ # 5π∕36) for four values of θ. We can
see in the images that there is a minimum at ϕm # 0
when θ # 0. The minimum rotates clockwise by π∕2
when the selected angle is increased counter-
clockwise by π∕4. This is consistent with the map
of Fig. 3(a). The top-down sequence of images in
Fig. 3(d) correspond to θ # π∕4 and a variable ellip-
ticity controlled by χ. We can see that, at χ # 0, the
minimum is at the center, consistent with eliminat-
ing the state of right-circular polarization. We see the
minimum moves from the center to the periphery of
the mode as χ is increased, consistent with themap of
Fig. 3(a) and following the meridian with 2θ # π∕2.
When χ # π∕2, there is no minimum, as the state
of left-circular polarization is located at rm # ∞.

This case produces Poincaré modes that have
elliptical singularities, C-points, at their center.
Figures 3(a) and 3(b) are the iconic “star” and “lem-
on” polarization singularities [20]. The C-points are
singular in the orientation of the ellipse axes, since
these are undefined for circular polarization. The or-
ientation of the ellipses around the C-point rotate
n∕2 times per turn around it [29], clockwise and
counterclockwise in Figs. 3(a) and 3(b), respectively.
At the radius rv, we observe another type of polariza-
tion singularity: L-lines. These are lines of linear po-
larization that separate regions of different elliptical
handedness [21].

2. Case ℓ1 # −ℓ2
We can express the Poincaré mode for this case as

V0;ℓ;0;−ℓ #
A0;ℓrjℓjG###

2
p !ei!ℓϕ$α"êR $ e−i!ℓϕ$α"êL"; (16)

# A0;ℓrjℓjGê!ℓϕ$α";π∕4; (17)

where ℓ # ℓ1 # −ℓ2. The amplitude of themode, given
by Eq. (17), is a single ring that peaks at rℓ [Eq. (6)].

The state of polarization is linear because at every
point there is an equal mixture of right and left cir-
cularly polarized states. Thus, we can refer to this
type of mode as a vector mode. The orientation of
the linear polarization is independent of r and forms
an angle ℓϕ$ α with the X axis. Figure 4(a) shows
the calculated pattern for ℓ # $3. As ϕ is increased
for r ≠ 0, the state of polarization follows a path along
the equator of the Poincaré sphere, as shown in
Fig. 4(b). The polarization axis performs 2ℓ half turns
around the center of the beam, or revolutions along
the equator of the Poincaré sphere. Note that there is
no polarization state drawn at the center of the map
(beam) of Fig. 4(a). That point is a Poincaré–Hopf po-
larization vector singularity or V-point [29,32] be-
cause it has all the linear polarization orientations.

We diagnosed this mode by imaging it after pas-
sage through a linear polarizer analyzer forming
an angle β with the horizontal (X axis). The trans-
mitted intensity is proportional to cos2!ℓϕ$ α − β".
It has 2ℓ minima at angles

ϕm #
!2m − 1"π

2ℓ
−
α
ℓ
$

β
ℓ
; (18)

where m # 1; 2…2ℓ. As we vary β, the minima rotate
at the rate dϕm∕dβ # 1∕ℓ. This is shown in Fig. 4(c).
The minima also rotate at the same rate in the oppo-
site direction when the interferometer phase is
increased.

For ℓ # 1 the vector-mode patterns have been stu-
died before: for α # 0 the mode is the well studied ra-
dial vector mode, and for α # π∕2 it is the azimuthal
vector mode. The modes transmitted by the polarizer
are the first-order Hermite–Gauss spatial modes ro-
tated by β [33].

B. Linear Basis

This subsection covers patterns that are quite dis-
tinct from the previous sections. These patterns do
not have the same type of symmetry about the center
of the beam as the previous modes.

1. Case ℓ1 ≠ −ℓ2
The Poincaré mode for this case is

W0;ℓ1;0;ℓ2 #
Gei!ℓ1$ℓ2"ϕ∕2

###
2

p !A0;ℓ1r
jℓ1jei!ℓ1−ℓ2"ϕ∕2$αêX

$ A0;ℓ2r
jℓ2je−i!ℓ1−ℓ2"ϕ∕2−αêY": (19)

To understand this equation better, we can rewrite it
as

W0;ℓ1;0;ℓ2 # NGei!ℓ1$ℓ2"ϕ∕2!eiθ0 cos χ 0êX $ e−iθ
0 sin χ 0êY";

(20)

where χ 0 # χ and θ0 # θ are defined by Eqs. (13) and
(14), respectively. However, χ 0 and θ0 do not relate to
the ellipticity and orientation of the semimajor axis
of the ellipses because the polarization eigenstates
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are êX and êY instead of êR and êL. If jℓ1j < jℓ2j, then
when r → 0, χ 0 → 0, and so the state of polarization,
defined by Eq. (20), is êX ; and when r → ∞, leading to
χ 0 → π∕2, the state of polarization becomes êY .
Figure 5 shows the polarization maps for two cases
within the choice jℓ1j < jℓ2j: (a) ℓ1 − ℓ2 # 1 and
(b) ℓ1 − ℓ2 # 2. For r increasing from 0, with ϕ # 0,
the map shows that the polarization axis rotates
counterclockwise in both cases. We can identify the
change in the state of linear polarization with a path
on the Poincaré sphere: going from êX to its antipode,
êY , by taking a path along the equator of the sphere.
More generally, all radial trajectories starting from
the center of the beam correspond to great semicir-
cles on the Poincaré sphere that start with êX at r #
0 and end with êY at r # ∞, as shown in Fig. 5(c). The
sequence of states in the beam at ϕ # θ0 correspond
to the states along the great semicircle shown in the
figure. When ϕ # mπ∕2 in Fig. 5(a) and ϕ # mπ∕4 in
Fig. 5(b) (withm an odd integer), the great semicircle
passes through a pole of the sphere at r # rv on its
way to êY .

The sequence of states along a circular path about
the center of the beam correspond to the states along
the circular trajectory on the Poincaré sphere shown
in Fig. 5(c). Short of a demonstration, we can under-
stand this by recognizing that the form of Eq. (20) is
identical to that of Eq. (12), with 2χ 0 and 2θ0 being the
polar and azimuth angles on the sphere, respectively,
now defined by a polar axis (χ 0 # 0) along êX and a
θ0 # 0 axis along êD. This also helps us visualize
the polarization patterns that we would get if we se-

lected other elliptically polarized eingenstates (anti-
podal on the sphere) as the polarization eigenstates
to combine with spatial modes [31].

Figure 5(d) shows a few measurements verifying
the pattern of Fig. 5(b). In the case shown, α ≠ 0.
We obtained the image by nulling a linear polariza-
tion state. That is, the image detects states on the
Poincaré sphere of Fig. 5(c) with θ0 # 0; π∕2. We do
so by varying χ 0, which depends on r. Thus, by vary-
ing the orientation of the nulled state, the minima
move radially from image to image. Experimentally
we varied θ from π∕4 to −π∕4 for χ # π∕4, which was
equivalent to varying χ 0 from π∕4 to 0 for θ0 # 0, fol-
lowed by increasing χ 0 from 0 to π∕4 for θ0 # π∕2.
Thus, the minima moved first inward at ϕ # α and
then outward at ϕ # α$ π∕2.

We note that, for the case of circular polarization
bases, α added to the orientation of the ellipses [see
Eqs. (12) and (17)]. Thus, the pattern rotated rigidly
with α. However, in the case of the linear bases with
χ 0 # π∕4, a phase α produced rotations of the pattern
in a different way: the positions of the states rotated,
but the states themselves retained their orientation.
This can be appreciated by the form of Eq. (20). Thus,
in the case of Fig. 5(d), the adjustment of the orienta-
tion of the nulled linear polarization state was inde-
pendent of the value of α. A change in α still produced
a rotation in the orientation of the minima but not on
the orientation of the state being blocked. The speci-
fic images in the figure were allowed to saturate the
digital camera to better appreciate the motion of the
minima. Figure 2 shows the unsaturated images for

Fig. 4. (Color online) Vector mode obtained by combining ℓ1 # $3 and ℓ2 # −3 spatial modes in the circular polarization basis: (a) polar-
ization-statemap, (b) path that the state of polarization follows on the Poincaré sphere for a circular path about the center of the beam (i.e.,
increasing ϕ at fixed r), and (c) images of the vector mode obtained after passage through a polarizer in several orientations β.
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the modes corresponding to this case: the component
modes, the Poincaré mode, and the mode after pas-
sage through an analyzer set to 130°.

This case shows interesting patterns of polariza-
tion singularities: C-point dipole and quadrupole
in Figs. 5(a) and 5(b), respectively, with L-lines divid-
ing elliptical regions of same handedness. Passage of
these Poincaré modes through a state analyzer still
contains interesting patterns of singularities: scalar
singularities. For example, if the light in the state of
Eq. (10) passes through a linear polarization analy-
zer oriented at an angle β, the state emerging from
the polarizer is

W 0
0;ℓ1;0;ℓ2 # !LGℓ1

p1e
iα cos β$ LGℓ2

p2e
−iα sin β"êβ; (21)

which is a superposition of Laguerre–Gauss modes
with relative weights determined by β. The resulting
spatial mode is well known [34,35]: a pattern of
phase vortices of topological charge ℓ1 at r # 0 sur-
rounded by jℓ1 − ℓ2j vortices of topological charge
ℓ2∕jℓ2j located at r # rv and angularly equidistant.

2. Case ℓ1 # −ℓ2
If we combine spatial modes in orthogonal linearly
polarized states, the vector mode is given by

W0;ℓ;0;−ℓ #
A0;ℓrjℓjG###

2
p !ei!ℓϕ$α"êX $ e−i!ℓϕ$α"êY": (22)

Converting the previous equation to the circular
basis yields

W0;ℓ;0;−ℓ # A0;ℓrℓjGi%e−iπ∕4 cos!ℓϕ$ α − π∕4"êR
$ eiπ∕4 sin!ℓϕ$ α − π∕4"êL&; (23)

# A0;ℓrjℓjGê−π∕4;ℓϕ$α−π∕4. (24)

The mode represented by Eq. (24) has the shape of a
ring with a maximum amplitude at r # rℓ. The polar-
ization is independent of r but dependent on ϕ. Re-
calling Eqs. (7) and (8), the ellipticity of the beam
depends on ϕ via

χ # ℓϕ$ α − π∕4. (25)

Fig. 5. (Color online) Polarization-state maps of the Poincaré mode obtained by combining spatial modes with (a) ℓ1 − ℓ2 # 1 and
(b) ℓ1 − ℓ2 # 2. In both cases the spatialmodes have p1 # p2 # 0 and jℓ1j < jℓ2jwith the polarization of the componentmodes linear. (c) Poin-
caré sphere paths for states with increasing r with fixed ϕ and increasing ϕ with fixed r. (d) Measurements of the Poincaré mode involving
the superposition of spatial modes with ℓ1 # 0 and ℓ2 # −2 in the linear basis. Images show the mode that passed a linear polarization
analyzer oriented an angle β. The phase between the two modes was 2α, with α ∼ 22°.
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Figure 6(a) shows the polarization map for ℓ # 2. To
simplify the analysis, we set α # 0, so χ # 2ϕ − π∕4.
This way, at ϕ # 0, the polarization is linear and or-
iented diagonal. (If we force χ to be positive, then χ #
π∕4 and θ # π∕4.) At ϕ # π∕8 the polarization is right
circular. At ϕ # π∕4, the polarization is linear again,
but antidiagonal. Because χ increases with ϕ, as gi-
ven by Eq. (25), the polarization state around the
center of the beam follows a path on the Poincaré
sphere along the meridians with 2θ # 'π∕2, as
shown in Fig. 6(b), and completes ℓ revolutions on
the sphere per turn around the beam. You can ap-
preciate this in the four colored sectors (in online ver-
sion) of Fig. 6(a).

This type of mode has been referred to as the hy-
brid vector mode for the case ℓ # 1 [8,33], where at
angles when χ is a multiple of π∕2 the polarization
is circular, at angles when χ is an odd multiple of
π∕4 the polarization is linear, and at other angles
the polarization is elliptical, with semimajor axis or-
iented at either $π∕4 (diagonal) or −π∕4 (antidiago-
nal) with the horizontal.

Figure 6(c) shows the measurements of the beam
transmitted through a linear polarization analyzer
oriented an angle β. The first panel is the transmis-
sion through a polarizer set to β # 0. This setting

does not produce any minima. When we set the lin-
ear polarization analyzer to β # π∕4, all the anti-
diagonal states of polarization are blocked. Thus,
we see four minima at the predicted angles (i.e.,
ϕ # mπ∕4, m odd). By following the polarization-
state map, we see that, at ϕ # π∕2, there is no
minima again. We can understand this more easily
by realizing that, at β # 0, π∕2, we are completely
blocking one of the component spatial modes and
transmitting fully the other one. When we set β
to 3π∕4, we can see from the map that the states
cancelled are at ϕ # nπ∕2 (n integer), as seen in
the images. For completeness, we include images
at other intermediate angles to show that the mini-
ma for those cases do not reach zero. It can be
shown that the modes seen for β # π∕4 and β #
3π∕4 are the unrotated and rotated, respectively,
second-order Hermite–Gauss mode with indices
!1; 1".

Notice that, as with a previous case, the polariza-
tion state located in the middle of the pattern is miss-
ing because it is a singular point. It is a point that has
all ellipticities: the states along the great circle of
Fig. 6(b). This can be interpreted as a Stokes singu-
larity [36,37] because S1 # 0, whereas S2 and S3 are
undefined [38].

Fig. 6. (Color online) (a) Polarization-state map obtained by combining ℓ1 # 2 and ℓ2 # −2 spatial modes in the linear polarization basis,
(b) path on the Poincaré sphere followed by the state of polarization of points of increasing transverse angle ϕ and fixed radius r, and
(c) images of the vector mode obtained after passing it through a polarizer in several orientations β.
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C. Multiringed Modes

We now discuss one further generalization of our
Poincaré modes: allowing cases where the component
Laguerre–Gauss modes have p ≠ 0. Consider the case
where we superimpose a mode with p # 0 and ℓ ≠ 0
with themode with p ≠ 0 and ℓ # 0. This combination
produces an interesting result that we analyze. At
r # 0 the spatial mode is purely the one with
p ≠ 0. This is because the one with ℓ ≠ 0 has zero am-
plitude at that point. The mode with p ≠ 0 has p ra-
dial nodes, with adjacent radial sectors out of phase
by π.

As an example, let us consider the case where the
spatial modes are LG1

0 and LG0
1 in right- and left-

circular polarizations, respectively. The Poincaré
mode for this case is

W0;1;1;0 #
Geiϕ∕2###

2
p %A0;1rei!ϕ∕2$α"êR

$ A1;0!−2r2 $ 1"e−i!ϕ∕2$α"êL&; (26)

or

W0;1;1;0 # NGeiϕ∕2!cos χ 00eiθ00 êR $ sin χ 00e−iθ00 êL"; (27)

with

tan χ 00 # A1;0!−2r2 $ 1"
A0;1r

; (28)

θ00 # ϕ∕2$ α: (29)

It produces the polarization map shown in Fig. 7(a).
The polarization state starts as left circular at r # 0
[χ 00 # π∕2 in Eq. (27)]. As r increases, the polarization
state at fixed ϕ changes following a meridian on the
Poincaré sphere [Fig. 7(b)], starting from the south
pole and reaching the north pole (i.e., right-circular
polarization) when r # rℓ # 1∕

###
2

p
. LG0

1 mode has a
node at the latter radius. Within this radius, the

beam has nonzero intensity everywhere and contains
all the states on the Poincaré sphere. As r increases
past rℓ, the polarization state continues with the
meridian at the opposite side of the sphere and
reaching the south pole at r → ∞. Thus, the polariza-
tion pattern of this mode is amapping of the Poincaré
sphere onto two radial sectors on the beam. By vary-
ing the values of the ℓ of the component spatial
modes, we can add angular sectors and multiply
further the mapping of the Poincaré sphere onto
points in the transverse plane.

5. Discussion and Conclusions

As has been shown in this article, both theoretically
and experimentally, a relatively simple experimental
setup can be used to produce a rich variety of Poin-
caré modes by varying the indices of the component
spatial modes and the polarization bases. We ex-
plained the polarization patterns of the Poincaré
modes via trajectories on the Poincaré sphere.

Our analysis did not consider propagation effects
but considered the effects of a phase between the
component spatial modes. Upon propagation, the re-
lative phase of the spatial modes of different order
changes due to the Gouy phase. As a consequence,
we expect Poincaré mode patterns in these cases
to rotate accordingly [35], with noted exceptions.

We were able to produce many types of polariza-
tion singularities: V-points, where the orientation
of linearly polarized states is undefined; C-points,
where the orientation of polarization ellipses is un-
defined; L-lines, where the handedness of the ellipses
is undefined; and a type of Stokes singularity where
two Stokes parameters are undefined. The only sin-
gularity that we were not able to reproduce with our
method was the monstar (see for example [29]). This
is because we limited ourselves to Laguerre–Gauss
eigenmodes for the component spatial modes, but
mixing superpositions with opposite polarization
states should provide the proper setting. Thus, our
method can be used as the basis to study all types
of polarization singularities. To our knowledge, this
is a first demonstration of a method to produce any
polarization singularities on demand.

One could consider using this method to encode in-
formation in the polarization pattern of Poincaré
modes. It would be interesting to determine how
stable these patterns are under propagation in inho-
mogeneous media. We can envision preparing
particular Poincarémodes, launch them into an inho-
mogeneous or birefringent medium, and study the
evolution of the pattern and the singularities con-
tained within.

Further work on the investigation of polarization
singularities should involve noncollinear propaga-
tion. This setting will allow investigation of new
three-dimensional polarization singularities pre-
dicted recently: Móbius strips of linear polariza-
tion [39].

This work was funded by National Science Foun-
dation grant PHY-0903972 and U. S. Air Force

Fig. 7. (Color online) (a) Polarization map of modes with p1 # 0,
ℓ1 # 1 and p2 # 1, ℓ2 # 0 in the circular basis. The circle drawn has
radius rℓ. (b) Path taken on the Poincaré sphere when following a
radial trajectory.
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