
Mapping of all polarization-singularity C-point morphologies

E.J. Galvez, B.L. Rojec, and K. Beach

Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346, U.S.A.

ABSTRACT

We present theoretical descriptions and measurements of optical beams carrying isolated polarization-singularity
C-points. Our analysis covers all types of C-points, including asymmetric lemons, stars and monstars. They are
formed by the superposition of a circularly polarized mode carrying an optical vortex and a fundamental Gaussian
mode in the opposite state of polarization. The type of C-point can be controlled experimentally by varying two
parameters controlling the asymmetry of the optical vortex. This was implemented via a superposition of modes
with singly charged optical vortices of opposite sign, and varying the relative amplitude and phase. The results
are in excellent agreement with the predictions.
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1. INTRODUCTION

Recent research in complex light has brought increased interest in polarization singularities.1–3 They appear
as non-separable superpositions of polarization and spatial modes in prepared beams,4, 5 or as the result of
inhomogeneities of media.6–10 These singularities are of fundamental interest because they reveal new aspects of
light in complex fields. They also are a path to uncovering the vector fields in three dimensions, which contain
knots and twists of the field vectors.11, 12 C-point singularities are fundamentally formed by the superposition of
an optical vortex in one state of circular polarization, and a plane wave in the opposite state of polarization.2, 13

Thus, they provide a means for locating optical vortices, and for potentially using them in metrology, due to
vortices’ sensitivity to perturbations.13, 14 These beams are created by design, and can contain any polarization
singularity that is desired. Preparation of designer beams with only one (isolated) singularity can be used to
study its behavior with propagation.

Beyond the studies of polarization singularities, the technologies to study them lend to the development of a
new type of remote sensing that adds polarization to imagery.15 The natural world emits light with polarization
information that is ignored by today’s imaging systems. The advent of new ones with polarization imaging
capabilities, in addition to space and wavelength, is expected to enhance the amount of information that is
received.16 Because polarization is multiplexed with wavelength, imaging polarimetry allows enhanced assessment
in fields that range from geographical to medical.17 A deep understanding of the polarization patterns2, 3, 18 and
the new family of hybrid modes that they entail19 will be necessary to help in the interpretation of polarization-
spatial-spectral imagery. Opening polarization to imaging will also help us uncover ways in which complex
polarization patterns are present in nature,20 and how the natural world uses polarization for its survival.21

As shown below, polarization-spatial modes are, in general, non-separable superpositions of polarization and
spatial mode.4 A study of classical polarization-spatial modes provides a way to recognize entangled states of
individual photons.22 Because spatial modes live in an infinite-dimensional Hilbert space, using spatial modes
in the hyper-entanglement of photons increases the amount of information that can be encoded in a single
photon. Here we present classical studies of the two-dimensional space of polarization “entangled” with a three-
dimensional space of spatial-modes. Just the 3 × 2 dimensional state is hugely rich in patterns, which have
parallels in the topology of Gaussian surfaces.23, 24

In our previous work we aimed at making isolated singularities by preparing pure p = 0 LG beams.18 We
did this by modulating the amplitude of the diffractive pattern that created the spatial modes with an optical
vortex. In this work we present singularities generated by unmodulated diffractive patterns, producing beams
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in spatial modes that are not necessarily pure, but which still contain a well defined optical vortex. Section 2
presents the theoretical formalism for generating the beams with isolated singularities, and discuss further the
properties of the space that we developed, which maps all 3 × 2 polarization singularities onto the surface of a
sphere. Section 3 presents the experimental arrangement, and Sec. 4 presents the results.

2. THEORETICAL FRAMEWORK

We have previously shown that a superposition of Laguerre-Gauss (LGℓ
p) modes with topological charge ℓ of +1,

−1 and 0 (and p = 0) can produce all types of isolated polarization singularities located in the center of the
light’s transverse plane.18 They are constructed using a nonseparable superposition of polarization and spatial
modes

Ψ =
(
cosβ LG+1

p + sinβ LG−1
p eiγ

)
eiδ êR + LG0

0 êL, (1)

where êR and êL denote states of right and left circular polarization, respectively. In this work we use r and ϕ
as the transverse coordinates. The LG modes are given by

LGℓ
p = Aℓ,pr

|ℓ|eiℓϕL|ℓ|
p GW. (2)

The optical vortex of topological charge ℓ, located at the origin of the beam’s transverse plane, is specified by
the factor r|ℓ| exp(iℓϕ). LG beams carry a Gaussian envelope, given by G = exp(−r2/w2), with w being the

beam’s half width. The amplitude has a radial modulation given by the associated Laguerre polynomial L
|ℓ|
p .

Other terms in Eq. 2 are the normalization constant

Aℓ,p =
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)1/2
1

w|ℓ|+1
; (3)

and the phase term W = exp[ir2/(2R) − φ], where R is the radius of curvature of the wavefront and φ is the
Gouy phase. We ignore the phase term as we will not examine propagation effects. In the situations presented
here the spatial mode that is generated for ℓ = ±1 is mostly p = 0 with small admixtures of modes with p ̸= 0.
The generated beam thus had the form

Ψ = A0GW

[√
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1
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cosβ eiϕ + sinβ ei(−ϕ+γ)

)
eiδ êR + êL

]
. (4)

The state of polarization ê, expressed in terms of the circular basis is particularly convenient for our purposes:

ê = eiθ cosχêR + e−iθ sinχêL. (5)

This is because χ and θ independently specify the shape and orientation of the ellipse, respectively. The ellipticity
of the state is related to the ratio of the amplitudes of the polarization components via ϵ = b

a = tan(π/4 − χ),
where a and b are the semimajor and semiminor axes of the ellipse, respectively. The orientation of the ellipse,
or the angle that the semimajor axis of the ellipse forms with the x-axis, is half the phase difference between the
two components, θ.

Using the construction of Eq. 1 we can map all types of C-points onto a unit sphere, shown in Fig. 1. The
polar angle of the sphere is 2β and the azimuthal angle is γ. The patterns mapped by the sphere correspond to
the case where δ = 0. When δ ̸= 0, the pattern with (β, γ, δ) is the same as the pattern with (β, γ − 2δ, 0) but
rotated by δ.

The sphere contains three regions of C-points. A lemon C-point consists of a state of circular polarization
surrounded by elliptical states whose semi-major axis orientation (θ) increases with the angular coordinate. The
north pole of the C-point sphere, obtained by setting β = 0 in Eq. 1, denotes the symmetric lemon, where
θ = ϕ/2 + ϕ0, with ϕ0 being an offset phase. The line patterns shown in the inserts to Fig. 1, also known as
polarization lines, are the locus of semi-major axis directions. The top insert shows the polarization lines of
the symmetric lemon. Lemons have one direction (ϕr) where all ellipses along it have θ = ϕr. That is, it is a



Figure 1. C-point sphere denoting by color the three morphological regions of C-points: lemons (L), monstars (M)
and stars (S). The polar coordinates are 2β and γ (for δ = 0), as specified by Eq. 1. Inserts show polarization lines
corresponding to selected points on the sphere.

direction where the polarization line is radial. In the case of the symmetric lemon shown in the top insert of
Fig. 1, ϕr = 0 (for the case δ = 0). More generally, the radial line of the symmetric lemon is ϕr = δ/2. (In the
experiments we use this to set δ = 0.) Lemons occupy a fraction of the northern hemisphere.

A second region of the C-point sphere covers the entire southern hemisphere, and represents all morphologies
of C-point stars. In contrast to lemons, the polarization ellipses surrounding the C-point have an orientation
that decreases with an increasing angular coordinate. They also have three radial polarization lines. The south
pole (β = π/2) corresponds to the symmetric star. For this case the radial lines have an angular separation of
2π/3. In general, the radial lines for symmetric stars are located at ϕrn = 2πn/3− γ/2 + δ/2, where n = 0, 1, 2.
The case of the insert to Fig. 1 corresponds to γ = π and δ = 0. When π/4 < β < π/2 the stars are asymmetric,
with non-equidistant radial lines, as shown in the inserts to Fig. 1 with β = 60◦.

In the northern hemisphere there is a region of intermediate type of C-points: monstars. The orientation
of the ellipses surrounding monstars increases with the angular coordinate, similar to lemons; but similar to
stars, monstars have three radial lines. The boundary between lemons and stars depends on γ, as seen in Fig. 1.
Because θ is half of the phase difference between the two polarization components, then by setting θ = ϕ in Eq. 4
we obtain a cubic equation in tanϕ. The lemon-monstar boundary corresponds to solutions that yield three real
roots where two are degenerate. The case for γ = 135◦ is illustrated in the bounded insert: the top one is a
lemon just before the boundary; the ones below it are a sequence of monstars, where we see the appearance of
the degenerate roots and their splitting for points further away from the boundary. The case γ = π, where the
monstar region has a cusp on the surface of the sphere, can be solved analytically, yielding βc = tan−1(1/3).13

Previous efforts map the C-points to a planar rectangle.13, 25 However, we find that a sphere is appropriate
because the areas of the distinct types of C-points relate in a simple way to the density of C-points in random
fields. Table 1 shows the computed areas of the three regions of the sphere of Fig. 1. The density of C-points in
random fields is the area on the sphere weighted by the z-coordinate of the sphere (Υ in Ref. 25). Our numerical
integration, listed in the table is in excellent agreement with predictions and measurements.2, 9

An underlying structure of the C-point sphere is the sphere of first-order spatial modes,26 where the north
and south poles are the first-order Laguerre-Gauss modes, and the equator has first-order Hermite-Gauss modes



Table 1. Listing of normalized areas of the C-point regions and the density of C-points in random fields.

C-point Area Density
Lemon 0.382 0.447
Monstar 0.118 0.053
Star 0.5 0.5

of different orientations. In such a sphere, antipodes are orthogonal spatial modes. Similarly, any C-point
morphology can be produced by a superposition of antipodal C-points. A recent implementation of C-points
using Hermite-Gauss modes confirmed this.18

3. EXPERIMENTAL METHOD

The setup to produce isolated polarization singularities has been described before.13 Briefly, a spatially filtered
and expanded laser beam from a helium-neon laser (632.8 nm) was sent to a Mach-Zehnder type interferometer,
as shown in Fig. 2a. The beam was linearly polarized in the vertical direction. A non-polarizing beam-splitter
served as input port to the interferometer. Two parallel beams were formed by reflecting the beam that was
reflected by the beam splitter.

Figure 2. (a) Schematic of the apparatus used to prepare the beams, and (b) setup to measure the polarization patterns.
Optical elements include beam splitters (non-polarizing BS; polarizing PBS), half-wave plate (HWP), quarter-wave plate
(QWP), polarizer (P), digital camera (CCD) and spatial light modulator (SLM).

One of the beams passed through a 3-element Pancharatnam-Berry phase shifter, consisting of a rotating
half-wave plate in between two quarter-wave plates with their axes aligned at 45◦ with respect to the horizontal.
It introduced a geometric phase in the beam by three consecutive polarization-state transformations, which sent
the state of polarization through a closed path on the Poincaré sphere. The phase shifter was used to adjust the
phase δ in Eq. 1. A rotation of the half-wave plate by δ/2 introduced a Pancharatnam-Berry phase of δ.27

Past the phase shifter, both beams were sent to a large area spatial light modulator (SLM, Holoeye model
SR-2500). The SLM was programmed with two adjacent patterns, splitting it into two equal sized panes. Each



light beam hit the center of each pane. Both panes had phase diffraction gratings, shown in the insert to Fig. 2a,
which diffracted the light by 0.5 degrees. The insert to the figure shows one type of patterns encoded onto the
SLM, which were not amplitude modulated, as in a previous report.18 The pattern in the left pane encodes a
spatial mode with an asymmetric optical vortex, given by

f(r)

(√
3

2
eiϕ − 1

2
e−iϕ

)
, (6)

Because the patterns were not modulated, the spatial mode was not a superposition of pure p = 0 modes with
β = π/6 and γ = π. Thus, f(r) accounts for the radial dependence of the mode, which is multi-ringed. This
is an outcome that is seen in the experiments. The asymmetry in the forked pattern, which is responsible for
creating the asymmetric optical vortex, is also visible in the figure. For illustration purposes, the pattern shown
has a lower density of lines than the actual patterns.

Because the SLM modified the polarization state, we had a polarizer after the SLM, transmitting vertically
polarized components of both beams. The ℓ = 0 beam passed through a half-wave plate, which changed its
polarization to horizontal. Both beams were recombined by a polarizing beam splitter. The beam exiting the
interferometer passed through a quarter-wave plate that converted the two linearly polarized states into circularly
polarized states, and thus constituting a mode given by Eq. 4.

The beam is analyzed using imaging polarimetry, which consists of sending the beam through a set of optical
elements that serve as a polarization-state filter. Past the filter, the beam is imaged by a digital camera, as
shown in Fig. 2b. By taking images after six filter settings we can find the Stokes parameters of every imaged
point, and so determine the corresponding state of polarization.

4. RESULTS

We have taken data in a number of configurations. Here we show the results obtained by varying β in Eq. 4, and
keeping γ = π (via programming the pattern on the SLM) and δ = 0 (via adjustment with the Pancharatnam-
Berry phase shifter). As mentioned previously, we show data obtained by programming the SLM with an
unmodulated pattern, giving rise to multi-ringed spatial modes.

Figure 3 shows theory and experimental results for an assortment of values of β. Three rows of frames
are shown for each case. The top frame per case shows the polarization lines. The second frame contains the
modeled pattern for the p = 0 case with a square array of ellipses representing the polarization of the point
where it is drawn. The measurements are shown in the third frame per case. For the second and third frames,
the color (online) represents the orientation of the ellipses, and the saturation of the color encodes the intensity
of the light. Superimposed on the graphs are the calculated polarization ellipses. For the data we have chosen
to display ellipses of points chosen at random. This is to avoid being biased by the prearranged square array.
Finally, also superimposed on the frames are lines representing the calculated orientations of radial polarization
lines.

The expectation is that when going from β = 0 to β = 45◦, the asymmetry of the pattern increases. The
same is the case when going from β = 90◦ to β = 45◦. Indeed, in looking at the set of eight sets of frames we
see that the first and last cases (β = 0 and β = 90◦, respectively) contain all colors of the colormap, but as β
approaches 45◦ from either direction, certain colors (e.g., bright red and light blue) get compressed due to the
rapid rate of change of θ as a function of ϕ around θ = 0 and θ = 90◦.

A key aspect of the patterns is their distinction by the type of C-point that they contain. Those frames
with β = 0, 10◦ are lemon patterns; those with β = 25◦, 40◦ are monstars, and those with β = 50◦, 70◦, 90◦ are
stars. The case β = 45◦ is a transitional case that does not contain a C-point. For β ̸= 45◦ the data is in good
agreement with the general expectations. For example, the monstar and star cases in general agree with the
expected patterns. The drawn radial lines also seem to agree with the patterns. Their orientations are listed in
Table 2.

For the case β = 45◦ the polarization orientations disagree with the drawn lines. In this case the lack of
purity in the modes may play an important role.



Figure 3. Theoretical and experimental results for selected values of β, with γ = π and δ = 0. For each case the top frame
shows the calculated polarization lines; the middle frame shows the modeled pattern; and the bottom frame shows the
experimental results. False color denotes the orientation of the polarization ellipses, and saturation represents intensity.
Drawn ellipses represent the state of polarization; lines indicate the directions of radial polarization orientation.



The measured ellipticity of the experimental patterns also agrees with the modeled ones. Although the
data has the usual imperfections of optical beams superimposed in an interferometer, the measured states of
polarization are consistent with nearly (right) circular states close to the center of the pattern, the C-point, where
the state is perfectly circular. As the distance from the C-point increases, the ellipticity increases, reaching linear
states at about half way distance between the center and the edge of the frame. Past the linear-state region the
handedness of the ellipses reverses to left-hand. The data and modelings also agree, although this may be taken
as only approximately due to the lack of purity of the modes.

Table 2. Angles of the radial polarization orientation for the cases of Fig. 3. The case β = 45 has no C-point, but the
two orientations of the polarization lines are shown for comparison with other cases. Angles are in degrees.

β ϕr1 ϕr2 ϕr3

0 0
10 0
25 0 +27.5 −27.5
40 0 +42.2 −42.2
45 +45 −45
50 180 +47.3 −47.3
70 180 +54.3 −54.3
90 180 +60 −60

In the present work, we produce isolated C-points. It is possible to produce any desired number or type
of C-points by design.28 The use of other polarization bases, instead of the circular basis in Eq. 1, results in
two C-points.4 The use of higher-order Laguerre-Gauss modes instead of first-order modes, leads in principle to
higher-order C-points.3 In practice, we have found that the sensitivity of optical vortices to perturbations breaks
up the C-points.

Moving forward, we have been experimenting with a same-path interferometer for producing better-quality
patterns. The ones shown in this article suffer from the alignment problems, due to being a superposition of
beams prepared in an interferometer. A same-path interferometer eliminates them.

An important use of beams with isolated C-points is in the study of the propagation of C-points through
inhomogeneous or nonlinear media. Since C-points are produced by an underlying optical vortex in a circularly
polarized field, they could be used to for the study of dynamics of optical vortices in media.
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