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ABSTRACT

We prepare heralded single photons in a non-separable superposition of polarization and spatial modes using an
in-beam polarization interferometer enabled by a spatial light modulator. We diagnose the quantum state using
two techniques: quantum state tomography and imaging polarimetry. The results are in very good agreement
with the expectations.
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1. INTRODUCTION

It is well known that spontaneous parametric downconversion produces photon pairs entangled in spatial modes,
conserving orbital angular momentum.1 This has been demonstrated via correlations of spatial modes projected in
a variety of spatial states, such as OAM eigenstates,2 fractional-OAM superpositions,3 angular phase sectors,4, 5

singular knots,6 Bessel beams,7 or even conjugate “ghostly” images.8 Spatial modes are desirable because they
contain an large, in principle infinite, Hilbert space.9

One disadvantage of the previous works is that the states involved in the entangled superposition are deter-
mined by the down-conversion process. A more desirable outcome is to encode a desired quantum state with full
control of the states used and their relative amplitudes and phases. This can be achieved by first projecting the
spatial state of the down-converted photons to a specific mode, such as the fundamental mode, and thereafter
encode the desired mode. In previous articles by our group we proposed two methods to achieve this, using either
collinear interferometers10 or polarization interferometers.11 Our original proposals involved passive diffractive
elements and interferometers. Spatial light modulators (SLM) have proven to be more versatile and superior for
encoding any desired spatial mode. The use of interferometers proved to be challenging, as instabilities in the
phase of the interferometers leads to decoherence. A viable solution to this was implemented using a polarization
Sagnac interferometer,12, 13 where separate modes were encoded by counter propagating paths. That way the rel-
ative phase remain immune to decoherence and independent to instabilities in the path length. Another method
used an electro-optic birefringent element, known as the q-plate, to transform the light into a non-separable
superposition,14

As we proceeded to implement these proposals with spatial light modulators (SLM) for encoding the modes,
we found a more attractive practical alternative that we describe here: same-path in-beam polarization inter-
ferometers.15, 16 This can be accomplished thanks to the polarization selectivity of SLMs: they encode spatial
modes for one component of linear polarization and just reflect the orthogonal component. We recently imple-
mented this scheme onto heralded single photons,17 where one polarization state was encoded a superposition
of Laguerre-Gauss modes with topological charges ` = +1 and ` = −1 in one state of polarization and a spatial
mode ` = 0 with the orthogonal state.
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The state leading to the mentioned non-separable superposition leads to a space-variant polarization state
in the transverse position basis. Due to our experience with the classical counterpart of these states18–21 we
performed imaging polarimetry of the state.17 This type of quantum polarization imaging has been reported
in the context of hyperentanglement22 and using a an enhanced digital camera.13 Our previous approach did
not include a more conventional quantum state tomography of the quantum state. In this article we report the
diagnosis of the state using both quantum state tomography and imaging polarimetry. Our work is the first
implementation of the in-beam preparation using an SLM of the quantum state of single photons self-entangled
in polarization and spatial mode.

In Sec. 2 we present the experimental approach to encode and decode the quantum state of heralded single
photons. We follow with a presentation of the quantum state tomography and imaging polarimetry results in
Sec. 3. We conclude in Sec. 4, which includes a proposal to extend this method to fully expand the dimensions
of the spatial Hilbert space of the photons.

2. EXPERIMENTAL METHOD

The elements of our experimental approach to encode the state have been described before.17 Here we describe
our latest approach. As a first step in a full two-photon implementation, we concentrate on heralded photons.
Below we describe the steps that we follow in the process.

2.1. Encoding the State

Briefly, following Fig. 1, we produce pairs of photons using Type-I parametric down-conversion. We use a lens
imaging system in the path of the photons to mode-match the spatial mode of the two photons. For ease of
presentation we do not show the exact path of the light: both photons travel the same distance and go through the
same set of mode-matched lenses and reflectors. A half-wave plate (H) rotated the polarization of the photons
to make available both horizontal and vertical components. We subsequently projected the spatial mode of
down-converted photons onto the fundamental mode using a pinhole spatial filter, as shown in Fig. 1a. We used
an SLM in reflection mode to encode a spatial mode onto the horizontal component of the photon. Since the
vertical component preserved its spatial mode, the photons were as a result encoded with the 2-qubit state:

|ψ〉 =
1√
2

(|+1〉|H〉 − |0〉|V〉) , (1)

where the spatial mode is represented by |`〉, labeling a Laguerre-Gauss mode with radial index p = 0 and
topological charge `. For polarization we use the rectangular basis: horizontal (H) and vertical (V). The light
acquires the programmable phase for the mode upon reflection. A sample pattern for ` = 1 is shown in the insert.
We adjust the relative phase between the two terms of Eq. 1 by rotating the phase pattern programmed onto
the SLM. Once the state is encoded, we decode the state via quantum state tomography or imaging polarimetry,
described in the following sections.

2.2. Quantum State Tomography

To reconstruct the density matrix of the state we must project in the spatial and polarization bases to determine
the quantum state of the photon. This was done by performing consecutive projections, first of polarization,
using three wave plates (two half and one quarter) followed by a polarizer; and then an SLM in diffraction mode,
via a forked diffraction pattern with a spatial modulation. This is shown in Fig. 1b. A sample pattern with a
low fringe resolution is shown in the insert to the figure. The SLM converted the to-be-projected spatial mode
to the fundamental spatial mode, a phase flattening process, which was then transmitted through a single-mode
fiber.2, 5 We did not correct for the relative inefficiencies of the phase flattening process.23

The spatial modes used in the tomography are shown in Fig. 2. These were encoded using the spatial light
modulator in diffractive mode. That is, the SLM was encoded a spatially modulated fringe phase pattern that
diffracted in first order at a small angle the conversion of the desired mode onto the ` = 0 mode.

An aspect of considerable challenge for us was to mode-match the spatial mode onto the single-mode fiber,
in such a way that insured orthogonality between the basis states |+1〉 and |0〉, requiring precise alignments of
the SLMs in the transverse plane. In conjunction with the spatial modes, we projected the polarization states,
so to perform a 2-qubit tomography.24



Figure 1. Schematic of the apparatus for encoding (a), decoding via: quantum state tomography (b), and imaging
polarimetry (c). Optical elements include wave plates: half (H), quarter (Q); polarizers (P); a pinhole-based spatial filter
(SP); single-mode (SMF) and multi-mode (MMF) fibers; folding mirror (FM) and spatial light modulators (SLM).

2.3. Imaging Polarimetry

We also did imaging polarimetry of the quantum state that was generated. This is a similar method that we
employed previously.17 It involved taking a single-photon picture of the photon’s space-variant polarization state
of the light. As shown previously, the state of Eq. 1 can be expressed as :

|ψ〉 =

√
2√
πw

∫ ∫
dr dφ e−r

2/w2

(√
2

w
reiφ|H〉+ eiδ|V 〉

)
|r, φ〉, (2)

where r and φ are the transverse coordinates, w the half-width of the spatial mode, and δ is a relative phase. In
the transverse basis the polarization and spatial coordinates are separable and so we can measure the polarization
state of each projected point. We projected the transverse position by scanning an iris in the transverse plane,
and assembling heralded-photon images taken one pixel at a time. We took six images with the photon passing
trough one of six polarization filters, which enabled us to obtain the polarization Stokes parameters for each
projected point in the transverse plane.

3. RESULTS

We present here the results for one of the states that we encoded and decoded: the one given by Eq. 1.



Figure 2. A table representing the spatial-mode states used in the quantum state tomography, showing their amplitude-
squared (probability) and phase.

3.1. Quantum State Tomography

Figure 3 shows one of out tomography results. In Fig. 3(a) we show the predicted density matrix of the state. It
is the conventional singlet state. Our measured state (the real component) is shown in 3(b). It gives a fidelity of
73%, which is very good given the challenges that we faced. The fidelity of product states that were not encoded
was mixed: such as |+1〉|V 〉 (19%) and |0〉|H〉 (4%); and the fidelity of the orthogonal triplet state was good:
2−1/2(|+1〉|H〉 + |0〉|V 〉) (4.1%). Other quantum measures were: a linear entropy of 0.3 (0 = pure state, 1 =
mixed state); a concurrence of 0.43 (1 = Bell state, 0 = product or mixed state); and a tangle of 0.18 (1 for full
quantum state). Thus, the indicators are positive but not yet optimal. We expect these to improve as our we
refine our methods.

3.2. Imaging Polarimetry

The results of imaging polarimetry of the photonic state are shown in Fig. 4. In graphs (a) and (c) we show the
theoretical modeling, and in graphs (b) and (d) we show the experimental measurements. The polarimetry gives
the Stokes parameters of each imaged point: S0, S1, S2 and S3. From them we can extract information about

Figure 3. Results of the quantum state tomography, showing the density matrix of the desired state (a) and the measured
real part of the density matrix (b).



the polarization ellipse: the orientation

θ =
1

2
tan−1

(
s2
s1

)
, (3)

and the ellipticity:

ε = tanα = ± b
a

(4)

where b and a are the semiminor and semimajor axes of the ellipse. When the ellipticity is positive the polarization
ellipse is right-handed; and left handed when the ellipticity is negative. The angle α varies as: −π/4 ≤ α ≤ π/4.
It can be obtained from the normalized Stokes parameters via:

α =
1

2
sin−1

(
S3

S0

)
(5)

Graphs (a) and (b) show the orientation of the polarization ellipse encoded in false color. Also shown are the
polarization ellipses drawn at periodic intervals and where the Probability exceeds 1%. The ellipses are color
coded for handedness, with right-handed being labeled red and left handed being labeled blue. Graphs (c) and
(d) show the ellipticity of the polarization ellipse encoded in false color.

Figure 4. Results of the imaging polarimetry, two aspects of the polarization of each image point are encoded in false
color. Ellipse orientation is displayed in (a) and (b), with the color bar representing the color coding (e.g., red for
horizontal, light blue for vertical, etc.). The ellipticity is shown in (c) and (d), varying from −1 (left-handed) to +1
(right-handed). Panes (a) and (c) correspond to modeled simulations while panes (b) and (d) are the measured data.
Color coding of the drawn ellipses corresponds to red being right-handed and blue being left-handed. The saturation of
the colors encodes the probability.



As can be seen from the imaging data, it indeed shows that the state of polarization of photons encoded in
the non-separable state of Eq. 1 is space variant. The comparison between the modeling and the measurements
is reasonably good in that the data reproduces the main features of the modeling, such as the distribution of
ellipse orientations and ellipticities. The lack of an exact one to one correspondence reflects the imperfections of
the overall technique so far. We expect these to improve as we gain more experience in encoding and decoding
the state. The good correspondence between the data and modeling also points out at the robustness of the
technique to encode the spatial mode using in-beam polarization interferometry.

4. DISCUSSION

The two methods of diagnosing the state have alternative if not complementary approaches. Further research will
focus in the correlation between these two and with the entanglement measures for quantum state tomography
and degree of polarization in imaging polarimetry. It may be useful to find this connection given that imaging
polarimetry is a much simpler and straight forward method to characterize the state. Recent proposals to
correlate quantum measures with classical approaches25, 26 give promise that this can be achieved.

In addition, we are in the process of implementing a more general method of encoding the quantum state.
The method shown in Fig. 1 encodes in general a spatial mode in one state of polarization with the fundamental
mode in the orthogonal state of polarization. The addition of a rotated, second SLM, to the encoding process,
shown in Fig. 5 will allow us to encode non-separable states of any two spatial modes. In the example shown in
the figure, we encode a spatial mode with ` = +1 in one state of polarization with the spatial mode ` = −3 in
the orthogonal state of polarization. In general, we would be able to encode the state

|ϕ〉 = a|uA〉|H〉+ b|uB〉|V 〉 (6)

where uA and ub could be eigenmodes or superpositions of eigenmodes, with a and b being adjustable constants.
The second SLM is rotated relative to the first one by 90 degrees.

Figure 5. Proposed method to encode non separable states of polarization and spatial mode that can allow access to a
large Hilbert space. It uses two spatial light modulators (SLM) rotated relative to each other, in reflection mode.

In conclusion, we have demonstrated the generation and decoding of spatial modes in non-separable states of
polarization and spatial mode using a new technique that we have developed, but inspired in previous works, to
encode the state via an in-beam polarization interferometer. Our diagnosis of the state is in very good agreement
with the expectations. These results pave the way for expansion into two directions: expanding the Hilbert space
that is available, and also duplicate the setup for the other photon partner so to obtain a non-local state.
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separable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51, 2925-2934
(2012).

19. Galvez E.J., and Khadka, S., “Poincaré modes of light,” Proc. SPIE 8274, 82740Y 1-8 (2012).

20. Galvez, E.J., Rojec, B.L., and McCullough, K.R., “Imaging optical singularities: Understanding the duality
of C-points and optical vortices,” Proc. SPIE 8637, 863706 1-10 (2013).

21. Galvez, E. J., Rojec, B. L., Kumar, V., and Viswanathan, N. K., “Generation of isolated asymmetric
umbilics in light’s polarization,” Phys. Rev. A 89, 031801 (2014).

22. Barreiro, J. T., Wei, T.-C., and Kwiat, P. G., “Remote preparation of single-photon ‘hybrid’ entangled and
vector-polarization states,” Phys. Rev. Let. 105, 030407 1-4 (2005).

23. Qassim, H., Miatto, F.M., Torres, J.P., Padgett, M.J., Karimi, E., Boyd, R.W., “Limitations to the deter-
mination of a LaguerreGauss spectrum via projective, phase-flattening measurement,” J. Opt. Soc. B 31,
A20-A23 (2014).



24. James,D.F.V., Kwiat, P.G., Munro, W.J., and White, A.G., “Measurement of qubits,” Phys. Rev. A 64,
052312 1-15 (2001).

25. Kagalwala, H., Di Giuseppe, G., Abouraddy, A.F., and Saleh, B.E.A., “Bell’s measure in classical optical
coherence,” Nature Photonics 7, 72-78 (2013).

26. De Zela, F., “Relationship between the degree of polarization, indistinguishability, and entanglement,” Phys.
Rev A 89, 013845 (2014).

27. Beckley, A.M., Brown, T.G., and Alonso, M.A., “Full Poincaré beams,” Opt. Express 18, 10777-10785
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