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Abstract. We present a same-path polarization interferometer that uses two spatial light modulators to encode
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1 Introduction
Light beams in nonseparable superpositions of polarization
and spatial mode encode modes with spatially variable
polarization. These beams are also known as Poincaré beams
because they carry a mapping of all states of polarization, as
represented on the Poincaré sphere, onto the transverse mode
of the beam.1 These beams are a general type of space-vari-
ant polarization modes of which cylindrical vector beams are
a subset. Poincare beams have been generated by direct
superposition in either free space1 or in optical fibers;2 or
by passage through either a subwavelength diffractive optical
element,3 a liquid-crystal birefringent optical element (so-
called q-plate),4 or a stress-birefringent optical element.5

The use of these beams has enabled fundamental studies
of polarization singularities,6,7 and in the encoding of quan-
tum information onto single photons.8–11

The advantage of superposition methods stems from the
freedom to encode any desired mode via electronic diffrac-
tive elements, such as spatial light modulators (SLM).12,13

Their shortcoming is in the alignment of the beams, which
can be nontrivial; and in the stability of the patterns due to
vibrations and air currents. In contrast, the use of a single
optical element3–5 has the advantage of keeping the beams
collinear, not requiring a lengthy optical alignment. Its short-
coming is the limitation in the number of modes that are
available per optical element. To encode the most general
Poincare beam, researchers must prepare a nonseparable
state of polarization and spatial mode,1 where two spatial
modes are prepared independently in orthogonal states of
polarization. Thus, it necessitates a polarization interferom-
eter design with a common path that uses SLM programming
for both states of polarization. This type of encoding of
SLMs has been accomplished previously by programming
two halves of an SLM, where the amplitude-divided parts
of the same beam are programmed separately by the same

SLM to then be recombined cleverly by either a diffraction
grating14 or a beam splitter in a double Sagnac interferom-
eter.15 An alternative is to encode directly onto the orthogo-
nal states of the same beam, such as with a double pass
through a separate area of a transmissive SLM.16 In this
article, we report on a common path design that uses two
reflection-mode SLMs that are orthogonally oriented. It is
similar to previous designs that used two consecutive SLMs
for image encryption, one to encode patterns and the other to
decode them.17,18

In our design, described in detail in Sec. 2, the two SLMs
encode the superposition of any two modes in orthogonal
states of polarization. The design is simple and robust, pro-
ducing collinear superpositions with ease. It leaves the more
difficult tasks to the encoding of the SLMs, which are driven
by a straightforward connection to a computer. In this article,
we demonstrate the operation of this arrangement by present-
ing two types of Poincaré beams that have not been reported
previously. They involve two types of space-variant polari-
zation patterns. The first one involves the generation of
beams with concentric polarization-singularity C-points.19

In particular, we show lemon and star polarization singularity
patterns using high-order spatial modes. Previous work was
limited to first-order modes.1,2,6 The versatility of the SLM
allows the extension of previous studies with ease. In Sec. 3,
we present the theory of these Poincaré modes followed by
the corresponding measurements.

2 Apparatus
The preparation of collinear light beams with an arbitrary
nonseparable superposition of spatial modes and polarization
necessitates an interferometer type of device that uses the
versatility of SLMs to encode the desired spatial modes
onto orthogonal states of polarization. As aforementioned,
the conventional interferometer poses an alignment chal-
lenge for achieving collinearity. Here we describe an exper-
imental design with two SLMs that uses a same-path
interferometer, which guarantees collinearity. The design is
shown in Fig. 1. It exploits the polarization selectivity of
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SLMs: they shift the phase of the field component that is
parallel to the axis of the SLM.

The initial beam of light was generated by a 3 mW diode
laser oscillating at 694 nm. It was coupled to a single-mode
fiber and sent into free space via a fiber collimator. This
ensured that the input beam was in a pure Gaussian mode.
The light was further refocused to make the wavefront as
planar as possible. The beam was also prepared in a linearly
polarized state forming an angle with respect to the horizon-
tal. Upon reaching the first SLM, one polarization compo-
nent (vertical, and parallel to the axis of the SLM) was
encoded with the spatial mode u1. The SLM, mounted on
an XY stage, was operated in reflection mode (as opposed
to diffraction mode20). This way, the spatial mode associated
with the orthogonal polarization (horizontal) was not
affected by the SLM but continued traveling along the same
path as the other component. Past refocusing 4-f optics and a
relaying mirror (not shown), the light encountered a second
SLM similar to the first one but with its axis rotated by
90 deg. This SLM encoded in reflection mode a second spa-
tial mode u2 onto the horizontal polarization component,
leaving the vertical component unaffected. Optical elements
past the second SLM performed a unitary operation that put
the light in a desired polarization basis. In the case of Fig. 1,
we used a quarter-wave plate, with fast axis at π∕4 with
respect to the horizontal, to put the modal superposition
in the circular polarization basis. The mode that was con-
structed was then

U ¼ au1êR þ bu2êL; (1)

where a and b are complex constants, and êR and êL denote
the states of right and left circular polarizations, respectively.
The relative magnitude of a and b was adjusted by the initial
half-wave plate that determined the orientation of the input
polarization. The relative phase between the modes was
encoded onto the SLM patterns that were programmed.

We used commercial SLMs from Boulder Nonlinear Inc.,
model P512, with 512 × 512 pixel dimensions. We did a
general custom calibration of the overall phase of the
SLM pixels for our working wavelength.21

In this work, we concentrated on superpositions that
involved the circular basis. However, with a suitable unitary
transformation after the second SLM, we could transform the
linear basis to any other polarization basis. This in turn gives
rise to distinct types of polarization-singularity patterns.
In a previous study, we showed that the rectangular linear
basis gives rise to symmetric multipole distributions of C-
points, and elliptical bases give rise to asymmetric multipole

distributions.1 We mentioned that we can change the relative
phase between the two terms of the superposition via the
encoding of the SLMs. However, that is not a restriction.
One can easily use an alternative means to introduce a spe-
cific relative phase: a Pancharatnam–Berry phase shifter.22

This type of device, the most simple of which consists of
three wave plates, inserts a geometric phase between the
orthogonal polarization components, with the value of the
phase specified by the orientation of one of the wave plates.
Alternatively, one can use a birefringent plate, tilting it to
adjust the relative phase.

We diagnosed the state of the light by imaging polarim-
etry with a digital camera.23 This entailed taking images with
six distinct polarization filters: linear-horizontal (H), linear-
vertical (V), linear-diagonal (D, þ45 deg), linear-antidiago-
nal (A, −45 deg), right-circular (R), and left-circular (L).24

The six images were then postprocessed to obtain the Stokes
parameters Si of each imaged point:25 S0 ¼ IH þ IV ,
S1 ¼ IH − IV , S2 ¼ ID − IA, and S3 ¼ IR − IL, where Iμ's
are the recorded intensities after filter μ. Our detection
scheme is shown in Fig. 1. The polarization filter consists
of a series of four optical elements: a half-wave plate (var-
iable), a quarter-wave plate (fixed with fast axis horizontal),
a half-wave plate (variable), and a Glan–Thompson polarizer
(fixed with transmission axis horizontal). This scheme
gave us the flexibility to diagnose the Poincaré beams
easily, because the first and second half-wave plates con-
trolled, respectively, the ellipticity and orientation of the
transmission polarization eigenstate of the filter.1 With the
Stokes parameters obtained from the filtered images, we
were able to fully determine the state of polarization of each
imaged point.

The patterns that were obtained indeed exhibited a very
good degree of collinearity. In the remainder of the article,
we will focus on two important cases of Poincaré beams that
were easily achievable with this setup.

3 Theory and Comparisons with Measurements
This work follows previous research by us on two indepen-
dent problems involving the creation of beams with compo-
site vortices26,27 and polarization singularities.1,7,28 Here we
focus on a general case that encompasses both. It involves
beams in a general superposition mode given by

U ¼ cos αðcos βLGl1

0 þ sin βLGl3

0 eiγÞêR
þ sin αLGl2

0 eiδêL; (2)

where α, β, γ, and δ are parameters that we can vary; and LGl
0

is a Laguerre–Gauss spatial mode with zero radial index (i.e.,
with singly ringed “doughnut” transverse amplitude) and
topological charge l. The spatial mode is given by

LGl
0 ¼ AlrjljeilϕGW; (3)

where r and ϕ are the transverse polar coordinates; Al, the
amplitude of the mode, is given by

Al ¼
�
2jljþ1

πjlj!
�1

2
�
1

w

�jljþ1

; (4)

with w being the half-width of the mode; G is the Gaussian
function, given by

Fig. 1 Schematic of the apparatus. Optical elements include lenses
(L), half-wave plates (H), quarter-wave plates (Q), polarizer (P), neu-
tral density filter (F), single-mode fiber (SF), fiber collimator (C), spatial
light modulators (SLM), and digital camera (DC). The SLMs were
rotated by 90 deg relative to each other.
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G ¼ e−r
2∕w2

; (5)

and W is a phase term, given by

W ¼ ei½kr2∕ð2RÞþφ�; (6)

where k is the wave vector, R is the radius of curvature of the
wavefront, and φ is the Gouy phase, given by

φ ¼ ðjlj þ 1Þtan−1ðz∕zRÞ; (7)

where zR is the Rayleigh range.

3.1 C-Points

If we make α ≠ 0 yet β ¼ 0, we have the superposition of
two spatial Laguerre–Gauss modes in orthogonal polariza-
tion states. In general, this gives rise to Poincaré modes
with a C-point at their center. C-points are singular points of
ellipse orientation (i.e., direction of the semimajor axis).
In following a counterclockwise closed path around the
C-point, the orientation of the ellipses rotates either clock-
wise or counterclockwise. This rotation is described by the
C-point singularity index.19

IC ¼ Δθ
Δϕ

¼ Δθ
2π

: (8)

The orientation of the ellipses in lemon (star) C-points
completes a half-turn counterclockwise (clockwise) per
closed counterclockwise path around the C-point. Conse-
quently, for lemon and star patterns, IC is þ1∕2 and −1∕2,
respectively. The orientation θ of an ellipse is half of the
relative phase between the right and left circular polariza-
tion components. If we encode modes with topological
charges l1 and l2 with right and left circular polarizations,
respectively, then the orientation is given by

θ ¼ Δlϕ − δ

2
− nπ; (9)

where n is an integer, δ is the phase between the two polari-
zation components, and Δl ¼ l1 − l2. We call the polariza-
tion pattern symmetric because of the linear relation between
θ and ϕ. Since δ and n have fixed values for a given beam,
the singularity index is

IC ¼ Δl
2

: (10)

Therefore, when Δl ¼ þ1 and Δl ¼ −1, the patterns
that are formed are symmetric lemons and stars, respectively.
The different cases denoted by the individual values of l1

and l2 have distinct distributions of ellipticity. The ellipticity
is determined by the ratio of the amplitudes between the two
circular polarization components, which in turn is due to the
spatial distribution of amplitudes of the individual modes.
Thus, Δl ¼ þ1 or Δl ¼ −1 specify a class of patterns that
have respectively the same lemon or star symmetric line sin-
gularity structure in the orientation of the semimajor axes
of the ellipses, irrespective of the individual values of l1

and l2.
For Δl ¼ 2 and δ ¼ 2nπ, the ellipses have radial orien-

tations at all the angles. This is the radial mode, popularized
by the case l1 ¼ −l2 ¼ 1, and known as the radial vector
beam.29 In this case, all the states of polarization are linear.
For jl1j ≠ 1, the semimajor axes are radial, but the states are
elliptical, with the ellipticity depending on the radial coordi-
nate. When δ ≠ 0, there are no radial orientations. The case
δ ¼ π is also known as the tangential mode because all the
semimajor axes are tangential to circles centered at the sin-
gular point. When δ is neither 0 nor π, the mode describes a
swirl-type pattern. Figure 2 shows examples of these three

Fig. 2 Simulations (top row) and measurements (bottom row) of three types of Poincaré beams.
Referring to Eq. (2), (a) and (b) correspond, respectively, to symmetric lemon (with l1 ¼ 2 and
l2 ¼ 1) and star (with l1 ¼ 1 and l2 ¼ 2) C-point polarization patterns. (c) Corresponds to a mode
that does not contain a C-point. When the phase difference between modes δ is not 0 or π, and the
semimajor axes of the polarization ellipses form a swirl, (c) corresponds to δ ¼ 240 deg.
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cases, displaying the predicted patterns and the measured
ones.

The measured patterns of ellipses in Fig. 2 follow the
simulated ones: lemon C-point for Fig. 2(a), star C-point
for Fig. 2(b), and swirl for Fig. 2(c). The simulations are sim-
ple superpositions of modes, per Eq. (2), and do not account
for beam propagation effects. It is clear that points along
radial lines in the measurements do not all have the same
orientations (encoded by the false color) as in the simula-
tions. The curvature in the color boundaries in the measure-
ments illustrates this. We attribute the discrepancy to the
different wavefront curvatures of the two modes. This may
be corrected by feeding back phase corrections to the two
SLMs. The patterns still demonstrate the general expecta-
tion: the production of space-variant polarization following
a particular singularity pattern. The measurements and sim-
ulations agree well in the neighborhood of the central singu-
lar point.

In summary, the superposition of two orthogonally polar-
ized modes with one or both carrying an optical vortex (of
different topological charge) creates a C-point pattern. Here
we concentrated on cases with jICj ¼ 1∕2. Cases with jICj >
1∕2 (but not IC ¼ þ1) give rise to modes carrying high-
order C-point singularities, also known as hyper C-points.19

Hyper lemons contain patterns also known as flowers, which
are characterized by their petals; and hyper stars contain pat-
terns also known as hyperbolic webs, which are character-
ized by multiple star-points.30 Our work on these cases is
ongoing and will be reported elsewhere.

3.2 Composite C-Points

The case when α ¼ 0 but β ≠ 0 in Eq. (2) is one where
the total mode has the same state of polarization, rendering
polarization irrelevant to the physics of the problem.

Variables β and γ specify the degree to which the two spatial
modes bearing optical vortices combine. This type of super-
position yields a beam with composite vortices:26,27 for
jl1j > jl3j, they consist of a central vortex of topological
charge l3 surrounded by jl1 − l3j singly charged vortices,
of charge l1∕jl1j symmetrically distributed about the center
at angles

ϕv ¼
γ þ nπ
l1 − l3

; (11)

with n ¼ 1: : : ð2jl1 − l3j − 1Þ, and at a radial distance
obtained by equating the amplitudes of the two spatial
modes [within the parentheses in Eq. (2)].27

rv ¼
wffiffiffi
2

p
�jl1j!
jl3j!

tan2 β

�
1∕½2ðjl1j−jl3jÞ�

: (12)

When α ≠ 0, we get a superposition of composite vortices
in one state of polarization with another mode that may or
may not have vortices (in the orthogonal state of polariza-
tion), giving rise to composite C-points. Figure 3 gives a few
examples. With one SLM, we can generate the mode pattern
of composite optical vortices by encoding the superposition
onto the SLM. The parameter that determines the number
and sign of vortices is l1 − l3. The radial distribution of
ellipses depends on the individual values of l1 and l3,
per Eq. (12). The angular distribution depends on the relative
phase between modes 1 and 3, per Eq. (11). All three cases of
Fig. 3 correspond to l1 − l3 ¼ 3, giving rise to three lemon
C-points forming a symmetrical triangular pattern located
about the center of the beam. In Figs. 3(a) and 3(c),
l1 ¼ þ2 and l3 ¼ −1. The composite vortices that they
carry entail three peripheral vortices of topological charge

Fig. 3 Simulations (top row) and measurements (bottom row) of cases of composite C-point patterns.
Following Eq. (2), they correspond to cases where α ≠ 0 and β ≠ 0. They produce patterns that are sim-
ilar but with subtle distinctions (see text). They correspond to l1 ¼ 2, l2 ¼ 0, and l3 ¼ −1 for (a); l1 ¼ 4,
l2 ¼ 0, and l3 ¼ þ1 for (b), and l1 ¼ 2, l2 ¼ þ1, and l3 ¼ −1 for (c). The phases ðγ; δÞ for the simu-
lations were set to match the measurements. They are (in degrees) (80, 210) for (a), (20, 160) for (b), and
(80, 110) for (c). False color represents ellipse orientation, and saturation is related to the intensity of the
beam.
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þ1 and a central vortex (l3) of topological charge −1.
Figure 3(b) has l1 ¼ þ4 and l3 ¼ þ1, which also yields
three peripheral vortices of topological chargeþ1 and a cen-
tral vortex of topological charge þ1. The mode encoded by
the other SLM may or may not encode an optical vortex. In
Figs. 3(a) and 3(b), we set l2 ¼ 0, which entails no central
vortex, but for Fig. 3(c), we set l2 ¼ þ1, which entails a
central vortex of topological charge þ1.

The superposition of the two modes with orthogonal
polarization preserves the location of the vortices of each
mode, giving rise to C-points where there are vortices in
each component. However, the orientation of the ellipses
in the patterns depends on the relative phase distribution
between the modes. Thus, all three cases give rise to a central
C-point, which has an index IC ¼ ðl3 − l2Þ∕2: −1∕2 for
Fig. 3(a), þ1∕2 for Fig. 3(b), and −1 for Fig. 3(c). Since
a vortex in one polarization is combined with a nonuniform
phase with the other polarization, the result is that most, if
not all, C-points are asymmetric, and with a subset of pos-
itive index C-points being monstars.7

The first row of panels in Fig. 3 shows simulations with
phases γ and δ set to match the experimental results, which
are shown in the second row. These phases differ for each
case. They are mostly due to Gouy phases accumulated as
the beams traveled through the lenses in our apparatus, but
may include phases introduced by the SLMs. As aforemen-
tioned, the color in the panels encodes the orientation of
the ellipses. This false color helps in recognizing the pattern
of ellipses and in comparing the measurements with the
simulations.

There is good qualitative agreement between measure-
ments and simulations on the type of C-point patterns, the
location of the C-points, and the general orientation of the
ellipses around them. It is clear that the ellipse orientations
follow the general pattern that is predicted, including the
false color. They disagree in some of the details, such as
the uniformity as a function of the distance from the C-points
and intensity distributions. Some of these may be caused by
passage through inhomogeneous optical elements, which
may insert geometrical aberrations. They may also be due
to limitations in the phase encoded by the SLM. Since the
SLMs are phase only, they do not produce perfect spatial
modes upon reflection. We introduced additional phases to
the patterns to modulate the amplitude of the modes, by dif-
fracting out some of the light. We did not correct for this
completely, and as a consequence, the modes were not pure.
These and other phase imperfections can be further corrected
by introducing feedback in the programming of the SLMs.

The data shown in Fig. 3 are representative of a larger
study that we did, where we took data on a number of
other combinations of topological charges with distinct
amplitudes and phases. They all show the same level of
agreement between the measurements and simulations. We
only showed cases where one composite mode was com-
bined to another eigenmode, per Eq. (2), but the latter could,
in principle, be another composite mode, in which case the
vortices of each mode will produce C-points in the result-
ing mode.

The apparatus is well-suited for the preparation and study
of asymmetric C-points, including monstars, a type of C-
point with characteristics of both lemons and stars.31,32

The asymmetric cases that we studied previously7 involved

β ≠ 0, π∕4, π∕2 and l1 ¼ −l3 ¼ 1 in Eq. (2), which result
in the production of an asymmetric optical vortex in one of
the polarization components,27 giving rise to asymmetric C-
points and monstars.7 However, the cases with l1 ¼ −l3 ≠
1 give rise to a larger variety of asymmetric C-points and
hyper C-points that have not been studied previously,
which are accessible with the apparatus presented here.

4 Discussion and Conclusions
In summary, we presented an experimental design for encod-
ing Poincaré beams using two reflection-mode SLMs in a
same-path polarization interferometer. The setup is robust
against common dephasing mechanisms, such as vibrations
and air currents. The quality of the beams that we obtained
can be further improved by using feedback in the encoding of
the SLMs. In this study, we imaged the beams in the far-field.
Through their propagation, the beams acquired Gouy phases,
which rotated the composite mode of one polarization com-
ponent,27,33 and also rotated the polarization ellipses in the
final space-variant mode.6 All of these relative phases
could be changed by modifying the patterns programmed
onto the SLMs. If the beams propagate further through an
additional optical system, the patterns will inevitably change
due to the new propagation phases.

We used our experimental arrangement to obtain new
results on the encoding of polarization singularities with
Poincaré beams. We generated new types of symmetric
lemon and star C-point patterns by encoding high-order opti-
cal vortices onto the orthogonal polarization components.
We also presented new results on the preparation of
beams with noncentral C-points, which we call composite
C-points. They show how we can encode C-points in any
location of the transverse profile of the beam via a suitable
superposition of spatial modes and their relative phases and
amplitudes. There is good agreement between the measure-
ments and expectations. These are also new results not
reported previously.

The setup can also be used to examine other types of sit-
uations, such as displaced modes,34,35 noncollinear modes,36

three-dimensional Möbius patterns,37,38 and new forms of
knotted light39 that include polarization. These can be
accomplished by using birefringent optical elements or by
inserting additional phases to the pattern programmed
onto the SLM. The present work only considered coherent
beams, but the apparatus can be modified for investigating
the patterns of partially polarized beams.40,41 By inserting
birefringent crystals anywhere in the path of the light, we
can delay one polarization component relative to the other by
amounts comparable to the coherence time of the beam of
light. The apparatus can also be used to access a larger multi-
dimensional space of polarization and spatial modes of sin-
gle photons.11,42

In the present study, we initiated a new regime of funda-
mental studies of polarization singularities via a simple and
flexible apparatus. The classical beams have intriguing
space-variant patterns encoding singularities that are yet to
be fully uncovered. Since C-points encode polarization, as
opposed to optical vortices, which encode phase, they are
more amenable for the encoding of information because
these can be easily decoded via imaging polarimetry. In com-
bination with imaging systems that decode polarization,43
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this system can be used for adding polarization to encoding
and sensing of imaging information.
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