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Abstract
We present the investigation of high-order disinclination patterns in the spatially variable
polarization of a light beam. The beam was prepared by encoding two distinct high-order optical
vortices on each of the circular polarization components of the beam. As a consequence, we were
able to produce high-index lemon and star patterns, which have positive and negative indices,
respectively. By varying the asymmetry of one of the vortices we were able to transform one
symmetric pattern (lemon or star) into another (lemon or star). With one exception, monstar
patterns always appear for specific ranges of asymmetry regardless of the end symmetric
patterns. Mapping of all disclinations within each case is contained in a spherical space, where
monstar regions are cusp-shaped. We found that high-order monstar patterns can have positive or
negative index.
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1. Introduction

Recent developments in the encoding of spatial modes onto
light beams have allowed the generation of optical beams
with spatially variable polarization. The latter is the result of
non-separable superpositions of spatial mode and polarization
[1]. The polarization patterns that these beams carry contain
disclinations, or rotational dislocations in directional order.
The singular point in the dislocation is also known as the
C-point [2]. Experimentally, these beams can be produced
either by superposition [1, 3–9]; or by passage through optical
elements: spatially variable birefringent plates [10], liquid-
crystals with spatially variable birefringence [11–13], optical
elements with stress birefringence [14], optical fibers [15–17],
or subwavelength gratings [18]. These beams are increasingly
finding applications in classical communications [19] and in
quantum information [20]. These methods also allow a greater
exploration of disclinations, by preparing them deliberately.

Lowest-order polarization disclinations are classified as
lemons, stars and monstars [2, 21–23]. They are characterized
by their index IC, denoting the rotation of the disinclination
per circulation around the singularity. They have been studied

widely in speckle fields produced by nonlinear [24, 25] and
inhomogeneous media [26, 27], but not until recently have
monstars, purely asymmetric patterns, been realized in the
laboratory using designer optical beams [6, 7]. Most of these
demonstrations have involved first-order singularities:

= I 1 2C , or half-turn per circulation about the singularity.
By extension, they also occur with high disclination indices.
Some higher-order patterns, have been investigated in the
context of vector beams [11, 28], but the systematic invest-
igation of higher indices has been limited to theory [29–31].

In this work we present a study of the generation of
beams with space-variant polarization encoding disclination
patterns of high index, both symmetric and asymmetric. We
do this by exploring the superpositions of two modes carrying
azimuthal phase, such as Laguerre–Gauss (LG), in orthogonal
states of circular polarization. In this work we do not image
the far-field modes, so suffices to say that we prepare modes
carrying phase dislocations, or optical vortices. Thus, this
work may not be limited to LG modes, and so could include
other modes, such as Bessel modes. By varying the asym-
metry of one of the phase dislocations we are able to generate
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new asymmetric patterns not seen before. Some of our find-
ings are surprising, as shown below.

2. Basic definitions

Because we work with light in free space at low powers, we
can assume linear behavior throughout. We use non-separable
superpositions of spatial modes and polarization to investigate
polarization disclination patterns and optical singularities.
Space-variant polarization patterns appear when the spatial-
mode function and polarization of the mode cannot be
separated.

2.1. Superposition of polarization and spatial states

We prepare and image a light mode with two orthogonal
circularly polarized components each carrying a distinct
optical vortex. This mode is described by

( ) ( )[( )
ˆ ˆ ] ( )

f b b= +
+

f f g

f d

-U r f r

e e

, cos e sin e e

e e , 1

ℓ ℓ

ℓ

i i i

R
i i

L

1 1

2

where b g, and δ are phases, and r and f are the polar co-
ordinates in the plane perpendicular to the propagation
direction. ℓ1 and ℓ2 are the topological charges of the spatial
modes with radial variation f(r), and êR and êL denote right
and left circularly polarized states, respectively. Without any
loss of generality we will set >ℓ 01 . We note that in the far
field, modes with distinct topological charge have amplitudes
with distinct radial dependence, but in our work we re-image
the light to the near field: an input fundamental Gaussian
mode with distinct phase encodings in the polarization
components. Thus, in our image plane

( ) ( )= -f r e , 2r w2 2

where w is the half width of the beam. This method of
imaging is not limiting at all, because in the far field, the
radial dependencies of the modes with distinct topological
charges only affect the ellipticity of the space-variant
polarization, leaving the orientation disclinations unchanged.

The spatial mode with right-circular polarization in
equation (1) has two phase vortices of the same absolute
value but opposite sign. We have considered previously the
case of two phase vortices of distinct absolute value and sign,
and imaged them in the far field [8]. This gives rise to a
pattern of composite C-points that consists of several dis-
clinations in the same beam. The use of two vortices of the
same magnitude but opposite sign, as described in
equation (1), allows us to study only one central disinclination
pattern but with a much greater control over its degree of
asymmetry.

2.2. Disclination patterns

Space variant polarization patterns are a consequence of non-
separable superpositions of spatial mode and polarization.
When the spatial modes involve optical vortices, these pat-
terns encode disclinations in the orientation of the

polarization ellipse. That is, the disinclination lines, or dis-
locations in the rotational order, are formed by the directions
of the semi-major axes of the polarization ellipses of the
vector field.

The index of the lines in a disclination is defined as the
number of turns that the orientation θ of the lines makes per
turn around the singularity or C-point [23]:

( )òp
q=I

1

2
d . 3C

Because of the circular symmetry, it is useful to define the
radial orientation, or the orientation relative to the radial
direction:

( )q q f= - . 4r

Disclination patterns are characterized by radial lines, which
are purely radial disclination lines (i.e., with q p= nr , with n
integer). For lemons and stars the radial orientation changes
by half a turn in between radial lines. In general, disclination
patterns contain one or more angular sectors separated by
radial lines. Because of the cyclic nature of the angular
variables, the number of radial lines N is equal to the number
of sectors. Thus

( )òp
q=N

1
d . 5r

The absolute value is for keeping N as a countable variable.
Replacing equation (4) into (5) and using the definition of
equation (3), we get

∣ ( )∣ ( )= -N I2 1 . 6C

The exception to equation (6) is the case with = +I 1C

because the orientation varies at the same rate as the angular
variable. We will devote to this case separately below.

Consider the cases b=0°and b=90° in equation (1).
The orientation of the semi-major axis of the polarization
ellipse is half of the relative phase between the two polar-
ization components. Because this phase varies linearly with f,
the orientation is

( ) ( )q f d= D - ¢ℓ
1

2
, 7

where D = -ℓ ℓ ℓ1 2 and d d¢ = for b = 0; but
D = - -ℓ ℓ ℓ1 2 and d d g¢ = - for b=90°. The orientation
is not a function of the radial coordinate r. Applying
equations (3) and (6) to these two cases yields

( )=
D

I
ℓ

2
8C

and

∣ ∣ ( )= D -N ℓ 2 . 9

Because monstars have been defined and studied only for
lowest-order disclinations, we need to extend their definition
for high orders: hyperlemons or hyperstars, symmetric or
asymmetric, have a number of radial lines given by
equation (6), whereas monstars do not. We expand on this
below. Equations (6) and (9) have been derived before in the
general context of non-collinear superpositions [31]. That
study included high-order symmetric disclinations and
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asymmetric cases caused by the non-collinearity of the
superposition.

3. C-point characterizations

Here we consider the particular cases of equation (1) that give
rise to high-order singularities. We will first present the cases
of symmetric lemons and stars, and continue into the asym-
metric case of monstars.

3.1. Lemons and hyperlemons

These types of patterns occur for >I 0C . The case with the
smallest index, =I 1 2C , can be produced by making =ℓ 11

and =ℓ 02 . When b = 0 in equation (1), the pattern with this
choice of ℓ1 and ℓ2 is produced by a mode with a symmetric
phase vortex with right circular polarization superimposed
with a mode of constant phase with left circular polarization.
This gives rise to a C-point pattern that is symmetric. That is,
the rate of change of the orientation is constant: 1/2 per
equation (7). This is a case when the ellipse rotates by half a
turn when following a closed path around the C-point. For
this case N=1.

This rotation along a closed path is illustrated by arrows
in corresponding left-most pattern shown in figure 1. We note
that the arrows do not represent the field; they are meant only
to illustrate the correlation between the pattern and the index
IC (i.e., the rotation of the orientation of semi-major axis of
the polarization ellipse around the singularity). The phase of
the electric field within the polarization ellipse also advances
with f as we travel along the path. This phase, also known as
the rectifying phase, is given by one half the sum of the
phases of the right and left circular components [22]. In the
case shown, the field advances by π after the round trip along
the closed path so that even as the polarization plane rotated
by half a turn, the field advances so that it returns to the
starting point of the path with the same amplitude and
direction with which it started.

Lemons with singularity index higher than 1/2 are also
known as hyperlemons [29]. In figure 1 we show the line
patterns of hyperlemons of increasing index. For lemons with

>I 1 2C , the main characteristic is the pattern of closed
curves that begin and end at the center of the pattern, also
referred to as flower petals [29]. The number of petals is
numerically the same as the number of radial lines (colored
red in the figure). Hyperlemons can have more than one radial
line. The line structure for a given value of IC is the same for
combinations of vortices that have the same value of Dℓ. For
example, D =ℓ 3 gives rise to the pattern for = +I 3 2C ,
which can be implemented for b = 0 by values of ( )ℓ ℓ,1 2

given by ( ) ( )-2, 1 , 3, 0 and ( )4, 1 . The disclination patterns
for these cases are the same in the near-field as in the far field.
However, the ellipticity of the patterns in the far field is not
the same for distinct values of ( )ℓ ℓ,1 2 . This is because dif-
fraction reshapes the amplitude of the modes according to the
value of the topological charge, yielding ellipticities with
distinct radial dependencies [8].

3.2. Stars and hyperstars

Stars occur for <I 0C . Consider the case = -I 1 2C ,
implemented by setting = =ℓ ℓ1, 01 2 and b=90°. This
case corresponds to the lowest-order star, which has 3 radial
lines. Similar to lemons, stars with index < -I 1 2C are also
known as hyperstars. Figure 2 shows examples of hyperstars
with increasing values of ∣ ∣IC . Stars are characterized by the
number of points, which is the same as the number of radial
lines. They have also been referred to as ‘spider webs’ [29].
For the case = -I 1 2C we display arrows to illustrate the
rotation of the lines around the singularity. Note also that
from radial line to radial line the radial orientation changes by
half a turn. This is true also for the patterns of figure 1.

For stars, the number of radial lines increases with the
magnitude of IC. The angular orientation of the symmetric
cases of lemon and star patterns can be varied by changing δ

for b = 0, and δ and γ for b=90°.

3.3. Monstars and hypermonstars

Up to now, monstars have been studied only for the lowest-
index case, ∣ ∣ =I 1 2C . For this case, monstars have

= +I 1 2C , same as the lemon, but with three radial lines, as
the star with = -I 1 2C [21]. This type of singularity is

Figure 1. Symmetric disclination patterns with positive index IC correspond to lemons and hyperlemons. They are created by superpositions
of topological charges ( )ℓ ℓ,1 2 and b = 0 in equation (1). The cases shown correspond to =I 1 2C with ( )1, 0 ; =I 3 2C with ( )-2, 1 ; IC=2
with ( )-3, 1 ; and =I 5 2C with ( )-1, 4 . Red solid lines denote radial lines. The case for =I 1 2C has arrows added to illustrate the rotation
of the orientation of the line around the singularity.
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called monstar because it has similarities to both lemons and
stars. Monstars have unique features of their own, but up to
now, the default definition of monstars has been: same index
as the lemon and same number of radial lines as the star.
However, this definition has to be modified to include high-
orders, where monstars can have the same index as stars.

One feature of monstars that distinguishes them from
lemons and stars is that they have sectors, delimited by radial
lines where disinclination lines radiate from the singularity,
but their radial orientation does not rotate by π from one
radial line to the other. The monstar for = +I 1 2C has two
of these sectors. The addition of these sectors produces
additional radial lines. The method for finding hypermonstars
is then to look for a disclination pattern where the number of
radial lines does not follow equation (6).

If the complex coefficients of the right and left circular
states are given by zR and zL, respectively, as obtained from
equation (1), then the radial-line condition can be specified by

( ) ( ) ( )f p= -z z n1 2 arg . 10R L

Setting

[( ) ( )] ( )f p- + =z z nIm exp 2 2 0, 11R L

we get

( )b bY + F =cos sin sin sin 0, 12

where

( ) ( )f d pY = - - - +ℓ ℓ n2 2 131 2

and

( ) ( )f g d pF = - - - + - +ℓ ℓ n2 2 . 141 2

We obtained the type of pattern by solving for f in
equation (12). The symmetric cases (b=0°, 90°) follow in
a straight-forward way, resulting in the radial-line directions

( )f
p d

=
- ¢

- D
n

ℓ

2

2
. 15r

This equation gives the angular values of the radial lines in
the patterns of figures 1 and 2. As an example of the solution
of an asymmetric pattern (b¹ 0°, 90°), consider the case
( ) ( )=ℓ ℓ, 1, 01 2 and with d = 0. At g = 0 there are no
monstars, and the lemon transforms directly into a star

through the intermediate pattern at b=45° (more on this
below). For other values of γ, monstar patterns appear for a
range of values of β: b b <g 45°. The lowest value of bg
occurs at g=180°, and the highest value converges to 45° as
g 0°, 360°. Previous work found ( )b =g

-1 tan 1 31 for
g=180° [7], obtained by finding the solutions to
equation (12), which gives rise to a cubic equation in

fsin [32].
Cases with other values of ( )ℓ ℓ,1 2 can easily be solved

algebraically for simple values of γ. Equation (12) leads to a
polynomial equation in powers of fsin of order

( )=N N Nmax ,0 90 . Discriminants in the solution give mini-
mum or maximum allowed values of bg that mark the divi-
sion between number of radial lines for b=0°and b=90°.
This division is the boundary between lemon or star, and
monstar. Some examples of high-order monstar disclinations
are shown in figure 3. In all of these cases the patterns do not
follow equation (6). The patterns were calculated by
numerically solving the disclination-line trajectories. Frames
(a) and (b) of figure 3 show monstars for cases ( )2, 1 and
( )3, 0 , with indices +1/2 and +3/2, respectively. Monstars
are studied in more details in a forthcoming publication [33],
but it is important to point out that the monstar in case (c) of
figure 3 has a negative index, and the monstar in case (d) had
lemons for both b=0°and b=90°.

4. Evolution of disclinations and hypermonstardom

It is desirable to find a space that contains a mapping of all
possible disclination patterns. The quest for the space that
contains the monstars of lowest index, referred to as ‘mon-
stardom,’ led to two types of spaces: planar [34] and spherical
[7]. Our goal is to find the range of parameters that give rise to
hypermonstars and to investigate all the possible patterns.
Because the patterns are represented by two angles, a sphe-
rical representation is most adequate. Thus, here we proceed
with finding the spherical space of hypermonstars: hyper-
monstardom. Our search is based on equation (1), which
through the angle β creates a transformation from a disin-
clination created by phase vortices ℓ1 and ℓ2 at b = 0, to one

Figure 2. Symmetric disclination patterns with negative index IC correspond to stars and hyperstars. They are created by superpositions of
topological charges ( )ℓ ℓ,1 2 and b=90° in equation (1),. The cases shown are: = -I 1 2C with ( )1, 0 ; = -I 1C with ( )-3, 1 ; = -I 3 2C
with ( )2, 1 ; and = -I 2C with ( )4, 0 . Red solid lines denote radial lines. The case for = -I 1 2C has arrows added to illustrate the rotation of
the orientation of the line around the singularity.
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with-ℓ1 and ℓ2 at b=90°. We will call these ‘end patterns.’
Intermediate values of β give rise to asymmetric disclinations
and monstars. The shape and range of disclinations also
depend on γ. For g=0°, 180°, the patterns have a mirror
symmetry about a horizontal line, as seen in figures 1–3. For
the first-order case, δ was found not to give rise to new pat-
terns, but to rotate them [7]. We found this not to be true for

= +I 1C , but our study of this case is still ongoing. The
studies presented here have been largely confined to d = 0.
The pattern with b=90° rotates with γ.

Each of the spaces spanned by the set of values ( )ℓ ℓ,1 2

consists of a sphere. Figure 4 gives examples of representative
cases. The cases shown represent three distinct situations with
respect to the sign of the index of the end patterns: when they
are of opposite sign (lemon-star), as for ( )3, 0 ; and when they
have the same sign: both stars for ( )2, 3 , and both lemon
for ( )-3, 4 .

For each case of figure 4, we show two perspectives: the
first row shows a three-dimensional perspective of the sphe-
rical space, and the second row shows a top or bottom view of
the sphere above it. For the three cases, the polar angle is b2
and the azimuthal angle is γ. Points on the surface of a sphere
map all the distinct disclination patterns for that case. Dis-
clinations within each hemisphere have the same index. The
blue and red regions correspond to patterns of the same index
as the end patterns. For example, in the first case with ( )3, 0 ,
the blue and red regions correspond to lemons (with

= +I 3 2C ) and stars (with = -I 3 2C ), respectively. For
( )2, 3 blue and red regions correspond to stars of index

= -I 1 2C and = -I 5 2C , respectively; and similarly, for
( )-3, 4 red and blue regions correspond to lemons of index

= +I 7 2C and = +I 1 2C , respectively. The yellow regions
of all three cases correspond to monstars. Case ( )2, 3 displays
the striking finding that monstars can have negative index. As
seen in figure 4, the monstar regions have a peculiar cusp
pattern. The number of cusps, distributed evenly about γ must
reflect an underlying symmetry that we have not yet deter-
mined. Also shown in the figure are sample disclination
patterns for each region.

We found that hypermonstars appear in almost every
case that we studied. Because of the complexity of most

algebraic solutions of equation (12), we resorted to solving it
numerically. We investigated the full range of cases shown in
table 1, which correspond to the cases with the lowest indices.
The top third of table 1 shows the lemon-star cases, with the
first row showing the previously studied case [7, 32]. The
table lists the values of ℓ1 and ℓ2, and for each case we list the
indices and number of radial lines for the end patterns. As β
increases from zero, the pattern transforms from one end
pattern to the other, going from the north pole of the sphere to
the south pole. As seen in figure 4, this transformation
includes a range of values of β for which the patterns are
monstars. In the last set of columns we list the index of the
monstar, the number of radial lines that it may have, and the
extreme value of bg that specifies the boundary between the
monstar region and either the lemon or star regions. These
values correspond to the tip of the cusps in figure 4. Within
parenthesis we list the number of cusps that the monstar
regions have. Note that there are cases that have the same
value of bg. For those cases, the corresponding regions of the
sphere have identical shapes because the solutions of
equation (12) yield the same polynomial equation. The pat-
terns themselves, however, are not the same. The values of bg
in the tables come from discriminants in the roots of
equation (12).

The second and third groups of data in table 1 show the
parameters for cases that involved end patterns with index of
the same sign. This is the first investigation unveiling this
regime of monstars. New findings include the existence of
monstars with negative disclination indices, as shown in the
second group. This is quite a surprising result because in the
first-order cases the monstar index is positive, and without
further study, it was thought to be a defining property of
monstars. The second and third groups also show results that
are corroborated by the spherical spaces of figure 4: the
threshold values of bg have periodic maxima and minima
appearing at symmetric values of γ. For example, the case
( )2, 3 has three cusps that appear at g=60°, 180°, 300°.

The first two groups of table 1 show a unique finding: the
number of radial lines in a monstar disclination can vary
within a monstar region. We denote these cases by listing two
values for the number of radial lines observed. For example

Figure 3. Four examples of monstars: (a) ( ) ( )=ℓ ℓ, 2, 11 2 for b=30° and g=180°, yielding = +I 1 2;C (b) ( )3, 0 for b=30° and
g=0°, yielding = +I 3 2;C (c) ( )2, 3 for b=30° and g=180°, yielding = -I 1 2;C and (d) ( )-2, 3 for b=60° and g=0°, yielding

= +I 1 2C . Solid red lines are radial lines, and dashed red lines correspond to the C-lines of the corresponding cases with b=45°. In
frames (a) and (c) there are solid and dashed lines superimposed at f = 0.

5

J. Opt. 18 (2016) 084003 B Khajavi and E J Galvez



Figure 4. Spherical spaces of high-order disclinations associated with transformations between disclinations of two indices. For each case, the
perspective view of the space is shown, and below it, the top or bottom view of the sphere. The cases shown correspond to patterns where the
b=0°and b=90° disclinations are respectively lemon with = +I 3 2C and star with = -I 3 2C for ( ) ( )=ℓ ℓ, 3, 0 ;1 2 star with = -I 1 2C
and star with = -I 5 2C for ( )2, 3 ; and lemon with = +I 7 2C and lemon with = +I 1 2C for ( )-3, 4 . Blue and red colors correspond to
regions with lemons (L) or stars (S), and yellow correspond to regions with monstars (M). Inserts show examples of disclinations in each
region.

Table 1. Characteristics of cases of disclination tranformations with the lowest indices.

Case b=0° b=90° Monstar

( )ℓ ℓ,1 2 Pattern IC N Pattern IC N IC N bg

( )1, 0 Lemon +1 2 1 Star -1 2 3 +1 2 3 18.43° (1)
( )2, 1 Lemon +1 2 1 Star -3 2 5 +1 2 3, 5 11.31° (1)
( )-2, 1 Lemon +3 2 1 Star -1 2 3 +3 2 3 18.43° (1)
( )3, 0 Lemon +3 2 1 Star -3 2 5 +3 2 3, 5 11.31° (1)
( )-3, 1 Lemon +2 2 Star −1 4 +2 4 26.57° (1)

( )1, 2 Star -1 2 3 Star -3 2 5 -1 2 3 31.0° (3)
( )2, 3 Star -1 2 3 Star -5 2 7 -1 2 5,7 23.3° (3)
( )1, 3 Star −1 4 Star −2 6 −1 8 33.7° (2)
( )1, 4 Star -3 2 5 Star -5 2 7 -3 2 3 35.6° (5)

( )-1, 2 Lemon +3 2 1 Lemon +1 2 1 — — —

( )-2, 3 Lemon +5 2 3 Lemon +1 2 1 +1 2 3 71.57° (3)
( )-1, 4 Lemon +5 2 3 Lemon +3 2 1 +3 2 3 71.57° (3)
( )-3, 4 Lemon +7 2 5 Lemon +1 2 1 +1 2 3 78.69° (5)

Specific cases are labeled by the values of ℓ1 and ℓ2 in equation (1). We list the characteristics of
the patterns that end at b=0°and b=90°, and those of the monstar patterns within the
transformations. We list the extreme values of bg , and within parentheses the number of cusps in
the monstar region.
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the case ( )2, 1 and g=180° has a monstar with three radial
lines for b 11.43°= ( )-tan 1 51 and five radial lines for
g=0° and b 38.66°= ( )-tan 4 51 . There was only one
case where we did not find monstars: ( )-1, 2 . We believe this
is so because it is the only case where the end patterns have
the same number of radial lines.

5. Experimental setup

The method that we used to investigate the disclinations is
similar to one used previously by us [8]. A schematic diagram
of the apparatus is shown in figure 5. We used a He–Ne laser
beam, withl = 632.8 nm, and sent it into a single mode fiber
to put the light in a pure Gaussian mode. We then used a
collimator and two confocal lenses to expand the beam and
fully illuminate the spatial light modulators (SLM). We used a
shear interferometer to insure that the wavefront was planar.
A polarizer with its axis at about 45° to the horizontal pro-
vided the linear (horizontal and vertical) components for
independent phase encoding by each SLM. Each SLM
applied a phase retardation onto the field component that was
parallel to its axis. Therefore, in order to apply two different
orthogonal spatial (LG) modes on vertical and horizontal
components of the beam, we rotated one of the SLMs.

Collinearity was an important consideration for our
experiments, so our apparatus used a same-path inter-
ferometer, which guaranteed it, also making the relative phase
between the components immune to interferometer instabil-
ities such as vibrations or thermal drifts. Upon reaching the
first SLM, one polarization component (vertical) was encoded
with the phase of a superposition of topological charges ℓ1

and-ℓ1. The SLM, mounted on an XY stage, was operated in
reflection mode. This way, the spatial mode associated with
the orthogonal polarization (horizontal) was reflected but not
encoded by the SLM, and so it traveled the same path as the
vertical component. Past refocusing 4-f optics and a relaying
mirror (not shown), the light encountered a second SLM
similar to the first one but with its axis rotated by 90°. This
SLM encoded in reflection mode a second phase vortex, with
topological charge ℓ2, onto the horizontal polarization
component, leaving the vertical one unaffected.

We used a quarter-wave plate, with fast axis at p 4 with
respect to the horizontal, to put the modal superposition in the
circular polarization basis. To best investigate the disin-
clination patterns, we placed another pair of confocal lenses
after the second SLM in a 4-f arrangement. The latter re-
imaged both SLMs onto a digital camera, providing a near-
field or Fresnel view of the original Gaussian mode plus
phase/polarization encodings.

In all cases at least one polarization component carried an
optical vortex. Thus, in the imaging of the SLMs at the
camera there was a small region of radius r0 of destructive
interference. Thus, in practice, equation (1) was satisfied only
for >r r0. We also used this spot for alignment purposes.
This small region can be seen in all the experimental data
shown below. A more detailed analysis of this will be pre-
sented elsewhere.

Before the camera we placed a set of polarization filters
to perform imaging polarimetry [8, 35]. The images obtained
by passage through six polarization filters (horizontal, ver-
tical, diagonal, antidiagonal, right circular and left circular)
were used to obtain the Stokes parameters of each imaged
point. Because both polarization components had the same
(Gaussian) amplitude, the polarization of each imaged point
was linear or nearly linear. This defined the orientation well
and thus helped the analysis of the disclination patterns.

6. Experimental results

Figures 6–8 show comparisons between the theoretical pre-
dictions and experimental measurements for cases
( ) ( )3, 0 , 2, 3 and ( )-2, 3 , respectively. We have done com-
parisons for most cases listed in table 1. In all cases the
agreement is very good, with the data showing all the disin-
clination features predicted by the theory. Row (1) in the
figures shows the calculated disinclination patterns. Rows (2)
and (3) show respectively the measured and the modeled
patterns. The size of each experimental image shown is of
about 450 pixels on each side. To better appreciate the dis-
clinations, the state of the polarization was drawn at semi-
random locations in the image. We also plot in false color the
orientation of the polarization in a useful way: colors encode
the orientation relative to the radial direction (qr in
equation (4)). The color selection is such that yellow specifies
the orientation of radial lines and blue specifies the orientation
of lines perpendicular to the radial direction. This way it is
much easier to identify the radial directions in the data. The
cases presented in columns (a) and (c) correspond to the end
patterns for b=0° and b=90°, respectively. Column (b)
shows the pattern corresponding to a monstar.

Case ( )3, 0 shows patterns not investigated before: a
lemon with = +I 3 2C , a monstar with = +I 3 2C , and a
star with = -I 3 2C . These patterns have 1, 3 and 5 radial
lines, respectively, as seen in Row (1) of the figure 6. The
dashed lines represent directions of disinclination dis-
continuities that appear for b=45° [33, 36]. They mark
directions of sharp turns in the disclination lines of asym-
metric patterns, which get more accentuated the closer β is to

Figure 5. Schematic of the apparatus. Optical elements include
lenses (L), half-wave plates (H), quarter-wave plates (Q), polarizer
(P), neutral density filter (F), single-mode fiber (SMF), fiber
collimator (C), spatial light modulators (SLM), and digital camera
(DC). The SLMs were rotated by 90° relative to each other.
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45°. In the far field these lines are C-lines, corresponding to
zeros of the mode with right-circular polarization. The main
features to notice in the data (row (b)) as it compares to the
theoretical modeling (row (c)) are the regions colored yellow.
They clearly show the radial lines in the star pattern. The
lemon and the monstar have regions of lines where the cur-
vature is very close to radial, and so the yellow coloring is not
as sharply defined as in the star pattern. Note that this case
refutes what was thought to be one of the features of mon-
stars, present in the lowest-order case, that the monstar has the
same number of radial lines as the star. The defining features
of monstars are the two sectors bounded by radial lines that
contain curved lines radiating from the singularity (i.e. with
radial orientation that does not flip between radial lines).

The case ( )2, 3 of figure 7 represents an important result
of this work. It is a case where the monstar has a negative
index. The end pattern with b=0° has = -I 1 2C in frame
(a). At b=23.3° two radiating-line sectors grow from each
of two of the radial lines, producing a monstar pattern with a
total of seven radial lines. As β increases, these lines grow
into the pattern of figure 3 (b) at b=43°. As β becomes b >

45° four of the radiating sectors merge to become two of the
hyperbolic-line sectors of the seven-point star of frame (c),
but with two radial lines spontaneously appearing at cusps in
the lines when b=43°. As b 90° the pattern becomes a
symmetric seven-point star. In addition to the radiating-line
sectors unique to monstars, the pattern has hyperbolic-line
sectors that give rise to its negative index. The agreement of
the monstar patterns and the modeled ones is remarkable.

The experimental results for ( )-2, 3 and g = 0, are
shown in figure 8. It is a case where the end patterns are both
lemons. All of the monstars that appear in the third group of
table 1 have lemon-type sectors plus sectors with radiating
lines. Thus, the lemon-type sector in figure 8 generates the
positive disinclination index. Note that the undulations in the
monstar pattern at the markers of the discontinuities at
b=45° (dashed lines in the figure) are seen clearly in the
data. We have called these ‘scars’ of the related pattern at
b=45° [36]. Small disagreement between the data and
modeling, particularly for column (c), is a sign of exper-
imental imperfections rather than a fundamental discrepancy.

Figure 6. Transformation of a+1 2 lemon to a-3 2 star through a monstar. All frames correspond to the case ( )3, 0 with g=0°. They are
divided by the value of β: 0° for (a), 30° for (b) and 90° for (c). In the first row red solid lines are radial lines and red dashed lines are C-lines
for the b=45° case. The second row is the polarimetry data. The third row is computer generated polarimetry. False color encodes radial
orientation, with yellow being the radial direction. Color saturation denotes intensity.
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7. Discussion and conclusions

Polarization patterns around first order singularities have been
widely studied in the past, but up to now little was known
about higher-order singularities, especially monstars. In this
study we investigated high-order asymmetric disclinations,
and in particular monstars. Our work was motivated by
theoretical calculations of asymmetric disclinations based on
the polarization of light. We found new and surprising pat-
terns associated to disinclinations with high index. We con-
firmed our calculations and modelings by direct observations
as presented in this article and two others [33, 36]. The overall
agreement between measurements and theory is excellent.

From our findings we conclude that monstars appear to
be of a general type not previously appreciated. They can
have either positive or negative index. Thus, they do not need
to have properties of lemons and stars at the same time, as
with lowest-order disclinations. They can also have properties
of either only. In addition, we recognized that monstars have
their own unique feature: sectors delimited by radial lines,
with disinclination lines that radiate from the singularity. We

propose that these radiating-line sectors should be the defin-
ing characteristic of monstars.

Alternatively, stars and lemons are disclinations that have
negative and positive index IC, respectively, but have dis-
clination lines with specific characteristics. Stars consist of
sectors bound by radial lines that contain lines that avoid the
singularity in a hyperbolic fashion. Lemons have sectors
bound by radial lines that wind about the singularity and, with
the exception of = +I 1 2C , disinclination lines begin and
end at the singularity. In the = +I 1 2C case, the pattern has
1 radial line and its disinclination lines describe parabolic-
type trajectories around the singularity. These features are all
consequences of the radial orientation of the lines rotating by
half a turn between radial lines.

The definitions given above do not include one important
case: = +I 1C . Is it a lemon or a monstar? This case is
exemplified by the radial vector beam. We are investigating
further the asymmetric patterns for this case, but already
anticipate a main finding [36]: all patterns with this index
have more in common with monstars than with lemons. For
cases with d p¹ the disinclination patterns consist of lines

Figure 7. Transformation of a-1 2 star to a-5 2 star through a monstar. All frames correspond to the case ( )2, 3 with g=0°. They are
divided by the value of β: 0° for (a), 43° for (b) and 90° for (c). In the first row red solid lines are radial lines and red dashed lines are C-lines
for the b=45° case. The second row is the polarimetry data. The third row is computer generated polarimetry. False color encodes radial
orientation, with yellow being the radial direction. Color saturation denotes intensity.
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that radiate from the singularity. The case d p= is a unique
case, where the disclination lines describe closed curves about
the singularity, but do not include it. Thus we are led to
conclude, pending further study, that this case belongs more
to the monstar classification than to the lemon.

This research on high-order disclinations may inform
other physical systems where disclinations are present. It may
encourage a more deliberate effort to find these high-order
disclinations and study their effects in the properties of the
systems in which they belong. Liquid crystals already show
interesting interactions with complex light [13, 37]. The study
of high-order disclinations in liquid crystals, or their inter-
action with light bearing high-order disclinations may offer
possibilities for new fundamental studies and applications.
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