
EUROGRAPHICS 2018/ F. Post and J. Žára Education Paper

A Creative First Assignment in the Modern Graphics Pipeline

Elodie Fourquet1 and Lillian Pentecost1,2

1Colgate University, Hamilton, NY, USA
2Harvard University, Cambridge, MA, USA

Figure 1: The Snail by Henri Matisse, 1953, Photo: c© Tate, London 2018 (left), next to the student’s sketch which plans the WebGL result
(middle). The wireframe images (right) illustrate a functionality programmed to subdivide a curve in a fan of triangles (close-ups generated
using fans of 10 and 20 triangles).

Abstract

This paper describes a first assignment in an Introduction to Computer Graphics course taken by undergraduate students at a
liberal arts college. The assignment marries the technical challenges found at the lowest level of the modern graphics pipeline
with the artistic concerns of reproducing a piece of art. To do so, students extend provided code in WebGL, which includes GLSL
shaders and no additional libraries, to reproduce a work of art of their own choosing. This task requires the students to involve
themselves simultaneously in the most technical and most artistic aspects of computer graphics. Such an inter-disciplinary
approach helps to reach a more diverse audience of computer graphics learners.

CCS Concepts
•Social and professional topics → Computer science education; Computational science and engineering education; •Com-
puting methodologies → Graphics systems and interfaces;

1. Introduction

In the last decade, academic and industry-based computer graphics
research developed a modern version of the graphics pipeline that
obtains high performance in 2D and 3D graphics by running shader
instructions directly on the GPU. This “new” pipeline provides sig-
nificantly more flexibility for implementers thanks to “shaders (also
called programs) [which] replace the hard-wired transformation
and lighting model of the GPU (also called fixed function pipeline)
with a programmable one” [Bau07]. The novel architecture of the
pipeline innovation creates an educational challenge.

The educational challenge is motivational. Students want to see
pictures right away. However, minimal working HelloGL programs
developed for the new pipeline are relatively long and complex,
varying from 50 [mdn18] to 150 lines of code [Tho13], most lines

a mystery to a student new to computer graphics. Merely reading
them requires the student to combine inter-dependent modules in
three languages (HTML, C-like and JavaScript), a significant chal-
lenge [RME14]. It is hard to see how the modules interact to put
the image on the screen. Unsurprisingly, the more performant and
flexible the graphics pipeline is the more complex the programming
environment becomes [BWF17] and the more set-up is needed be-
fore a student sees any result. Abstracting away detail by providing
high-level libraries has been proposed [FWW13, AB15, TRK17],
as has been teaching computer graphics (CG) as a whole in a top-
down rather than in a bottom-up fashion [AS14]. These approaches
allow students to get results early, which stimulates their interest in
the subject, but at the cost of hiding the open-ended power of mod-
ern graphics hardware, which is unattractive to technically-minded
students.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



E. Fourquet & L. Pentecost, / A Creative First Assignment

This paper proposes an initial assignment that provides students
with an aesthetically satisfying result while exposing them to low-
level accelerated code from the start of the course. The code they
write reproduces a 2D work of art of their choice, such that the
output is attractive to them, and working in 2D gives them exposure
to pipeline programming without the complexities of 3D geometry,
which they learn later in the course. Indeed, the assignment takes
advantage of the flexibility of the modern programmable pipeline.
Students learn to model and visually debug the rendered output,
which are skills that are easy to learn in 2D, and they carry these
skills over to 3D later.

In this paper, we first present the assignment as seen by the stu-
dents. Next, we discuss their results with comments on what fea-
tures the students coded, how the assignment can be tuned, and
common pitfalls to avoid.

2. Assignment Description

The first assignment in this Introduction to Computer Graphics
course requires fourth-year undergraduate students to reproduce a
work of art. In doing so, they learn how to manipulate the geomet-
ric primitives of WebGL 2.0 (the JavaScript API based on OpenGL
ES 3.0 API), get familiar with the mechanisms that process primi-
tives using the GPU vertex and fragment shaders, and gain experi-
ence coding low-level model data structures and graphics functions.
Specifically, students focus on defining the 2D geometry in terms
of triangles, associating each vertex with attributes and structuring
images as collections of JavaScript objects.

When students reproduce a work of art, they must think about the
graphical structure of the work and plan how to map it onto graph-
ics primitives. This is done in three stages, which are described in
Sections 2.1, 2.2, and 2.3. An example of this process is illustrated
in Figure 1, showing the sketch prepared by a student and their We-
bGL code output. The learner gets both agency and ownership as
they begin making design choices that affect the final result.

2.1. Work of Art Selection

Each student starts their assignment by selecting a 2D work of
art. Students are asked to find their piece in a library art book,
as opposed to an online photograph, because art historians situ-
ate the artist and the work and provide trustworthy representations
of a work’s coloration. The students are required to select a piece
that contains sufficiently complex geometry in order to use several
drawing modes in WebGL, and this is usually the student’s first
exposure to thinking in terms of graphics primitives.

The leftmost image of Figure 1 is the work of art selected by
a student. Found in a book of cutouts and collages of Henri Ma-
tisse [EM78], The Snail has challenging geometry, containing both
sharp and smooth edges. The vibrant colors and unique layout in-
spired the student, and this is a good example of a manageable
challenge. Reproducing The Snail as a first WebGL implementa-
tion demonstrates the rewarding experience and goals students set
for themselves in this assignment.

2.2. Sketching & Planning

After choosing a work of art, the student is required to hand-draw
a sketch of it with clearly labeled coordinates that quantify its 2D
features. Good geometric planning minimizes later trial and error
editing of data structures.

The second image of Figure 1 is the student’s tracing of The
Snail. The basic structure of the piece, including the effect of lay-
ering the collage papers, is apparent in the sketch. The placements
of the straight edges forming the individual geometric shapes are
emphasized with coordinate labels. Other unique and complex fea-
tures of the piece that increase its resemblance to the original are
present but only suggested in the hand-drawn plan.

2.3. Coding

For this assignment, 150 lines of starter code, included in the sup-
plementary materials, are provided. It comprises the repetitive code
found in most graphics application [AH17], including

1. setting up canvas for rendering,
2. setting up data in the program,
3. creating two GLSL shader programs:

• the vertex shader, which receives vertex position as 2-
component vector and converts it to 4-component, together
with its 4-component color attribute, and

• the fragment shader, which copies each incoming interpo-
lated color value to an outgoing fragment color,

4. creating buffer objects and loading data into them,
5. connecting data locations with shader variables, and
6. rendering.

Students come to understand this provided code as they make
changes and additions to it. Specifically, they extend the code to in-
troduce the data (item 2) that reproduces their work of art, organiz-
ing it into vertex buffer objects and loading the data with drawing
mode in the WebGL API (item 4) to render primitives from array
data. From this starting point, students understand the ubiquity of
collections of triangles for high-performance graphics in a way that
is unlikely to be apparent when specifying a sphere or loading hu-
man face mesh within a high-level graphics API.

Because their works of art have many, many triangles, students
write JavaScript functions to create data. Those functions return ar-
rays of 2D coordinates representing the geometry of their sketches.
They also create JavaScript objects, grouping array data buffer,
stride size and total size with the drawing primitive mode, to be
loaded into WebGL [Par14, Chap 2.]. These JavaScript code ab-
stractions make it easy to follow the stateful nature of the graphics
context, thus maximizing performance.

Coding The Snail, the student made use of the stateful nature of
the graphics context to draw each shape so that the overlapping ef-
fect was executed in accordance with the original piece, as shown in
the middle image of Figure 1. First, the student implemented a sim-
ple version of the painting, determining precisely the normalized
device coordinates for the rigid edges of each shape and their color.
Then, the student wrote a JavaScript function to include the promi-
nent curved features. Indeed, many students wrote functions that

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



E. Fourquet & L. Pentecost, / A Creative First Assignment

discretized circles as triangle fans, based on a center, a radius and
the number of triangles needed to achieve the desired smoothness.
The right side images of Figure 1 illustrate the results of such a
function, parametrized for an arc. Many students rendered in wire-
frame to compare the effects of using different number of triangles.

3. Results

This assignment was given to a class of twenty-four undergraduate
students at a liberal arts college. Students had two weeks to com-
plete their work. On its completion, all students could program the
modern CG pipeline successfully, realising aesthetic goals with up-
to-the-minute technology. Half of the students produced images of
comparable quality to the ones included in this paper. Female stu-
dents out performed male students: Figures 1, 2 and the middle two
of Figure 3 were created by women. Next, we discuss features of
the students’ results and two pitfalls that reduced student learning.

3.1. Student Successes

We note two aspects of art selection that were important in develop-
ing students’ programming ability and confidence. Students learned
more when they chose a work that demanded careful geometric
planning and had sufficiently complex geometry to necessitate pro-
cedural abstraction when editing their shapes in code. Successful
students automated repetitive modeling tasks, making evident the
connection between image structure and program structure.

The first aspect is selecting a challenging work of art. Figure 2
shows the result of a challenging selection, similar in quality to
Figure 1. The freedom to choose provokes most students into ambi-
tious choices. They enjoy the opportunity to explore further a work
they admire, know, or may have seen. The Three Musicians paint-
ing by Picasso was selected by a student who had a personal attach-
ment to the piece, having seen it multiple times in the Museum of
Modern Art. The sketch demonstrates a carefully thought out plan
that guided its recreation in WebGL.

Figure 2: Sketch based on the Three Musicians, a painting by
Pablo Picasso (1921), and the WebGL created image.

The student’s sketch retains the abstract geometry of the original
work, capturing occlusion by layered drawing. Some details omit-
ted from the sketch appear in the final WebGL image. Among them
are holes on the flute, implemented by overlapping circles, and the
patterned lines in the friar’s veil and guitar strings, and these de-
tails make each object more salient. These additions indicate the

increased creative opportunities that occur as the graphics environ-
ment is mastered.

Thus, the final interpretation shows the student incrementally
adding features in code to improve the aesthetic of the WebGL im-
age. For example, the repetition of triangles for each paw of the
dog, a subtle detail simple to code, visually separates the animal
legs from the background wall. Some complexities that are modi-
fications of the original work are sometimes added in student de-
signs. The harlequin’s costume, for example, has on the right leg a
pattern that is a reinterpretation created in the sketch by the student.

A second approach to selecting a piece is to choose a highly
geometric work, sufficiently complex because it is rich in shapes
and patterns. Works by Burgoyne Diller, Bryce Hudson, and Wael
Shawky shown in Figure 3 were used, and other well-known works
were the paintings of Robert Delaunay, Frank Stella and Kaz-
imir Malevich. These strongly geometric works contain repetitions,
smooth shapes, and sophisticated layering. They require students to
master data abstraction, looping, and functional decomposition to
produce program structure that reproduces image structure.

Figure 3 shows more examples of images that challenged stu-
dents to innovate in code. Composition 1938 (left images of Fig-
ure 3) requires code that renders open circles. A first try might ren-
der two overlapping circles, the second using the background color,
but the blue lines behind preclude this approach. Instead, this stu-
dent wrote a function that generates a circular band using a triangle
strip. Drawing 58 (right images of Figure 3) consists of two areas
separated by an oblique divide. Each area is tiled by lozenges, yel-
low in lower area, grey in the upper. Each area is easily constructed
functionally, but the dividing lines requires a special case compu-
tation of vertex positions such that the student’s code reproduces
the sharp divide of the composition. In the second set of images
in Figure 3, Untitled Composition (#43), careful ordering of primi-
tive definitions facilitates editing the geometry. Indeed, the student
recreating it used primitive overlappings to give the 3D effects of
the viewed composition and wrote code to generate elliptical geom-
etry with triangle fans. Finally, to effectively reproduce the third set
of images in Figure 3, Third Theme, the student organized collec-
tions of rectangles in separate lists according to color attribute.

3.2. Common Pitfalls

Two common pitfalls reduce student learning. Some students se-
lect artworks that are overly simple. If the piece lacks geometrical
challenge, students get little exposure to the programming environ-
ment. For example, six students selected purely geometric works
by Piet Mondrian. Because a small number of primitives approxi-
mates the geometric layout, most of these students omitted drawing
a careful sketch. The generated images were mere imitations of the
originals and the students learned little. This pitfall demonstrates
the importance of instructor supervision, feedback and guidance in
the selection of works of art.

The second pitfall is more complex. It is important that abstrac-
tions in the code reinforce abstractions in the image, and vice versa.
A weak image abstraction in a poorly thought out sketch is shown
in the left image of Figure 4. Having insufficiently planned the ge-
ometry of the main elements, the most important being the rooster,

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



E. Fourquet & L. Pentecost, / A Creative First Assignment

Figure 3: Original works (top) and students’ WebGL reproductions (bottom) from left to right: Composition 1938 by Burgoyne Diller (1934),
Untitled Composition (#43) by Bryce Hudson (2014), Third Theme also by Diller (1939), and Drawing 58 by Wael Shawky (2010).

the student wasted time experimenting with gradient in shaders. As
a result, the generated image is poor, the rocks being insufficiently
salient; the gradient simulating the shaded form is poorly executed
and doesn’t compensate for the inadequate abstraction of the ge-
ometry.

Figure 4: Sketch based on the Landscape with Rooster painting by
Juan Miró (1927) and the generated WebGL image.

During the next offering of the course, mid-progress feedback
will be provided twice during the assignment: first, a discussion
of abstraction in the sketch and second, a code review as they write
their WebGL program. We observe that students who worked incre-
mentally, refining and elaborating abstractions as they went along,
learned the most in completing the assignment. The goal is to have
students learn to abstract the structure of scenes and images as a
guide to abstracting the structure of code, and close and personal
attention to each student’s work is required to achieve this.

3.3. Conclusion

This paper presents a first CG assignment for undergraduate stu-
dents that places them in the position of both the programmer and
the artist. Taking this approach throughout the course helps them
develop better software and makes them more well-rounded indi-
viduals. The traditional divide between art and technology can be
overcome in our computer graphics classrooms [CMA10], and this
assignment is an effort to innovate across that divide.

References
[AB15] ACKERMANN P., BACH T.: Redesign of an Introductory Com-

puter Graphics Course. In EG 2015 - Education Papers (2015), Bron-
stein M., Teschner M., (Eds.), The Eurographics Association. 1

[AH17] ANGEL E., HAINES E.: An Interactive Introduction to WebGL
and Three.JS. In ACM SIGGRAPH 2017 Courses (New York, NY, USA,
2017), SIGGRAPH ’17, ACM, pp. 17:1–17:95. 2

[AS14] ANGEL E., SHREINER D.: Interactive Computer Graphics with
WebGL, 7th ed. Addison-Wesley Professional, 2014. 1

[Bau07] BAUCHINGER M.: Designing a Modern Rendering Engine. PhD
thesis, TU Wien, Vienna, Austria, 2007. 1

[BWF17] BALREIRA D. G., WALTER M., FELLNER D. W.: What we
are teaching in Introduction to Computer Graphics. In EG 2017 - Edu-
cation Papers (2017), Bourdin J.-J., Shesh A., (Eds.), The Eurographics
Association. 1

[CMA10] COMNINOS P., MCLOUGHLIN L., ANDERSON E. F.: Se-
lected Papers from the SIGGRAPH Asia Education Program: Educating
Technophile Artists and Artophile Technologists: A Successful Experi-
ment in Higher Education. Computer Graphics 34, 6 (2010), 780–790.
4

[EM78] ELDERFIELD J., MATISSE H.: The cut-outs of Henri Matisse.
G. Braziller New York, 1978. 2

[FWW13] FINK H., WEBER T., WIMMER M.: Teaching a Modern
Graphics Pipeline Using a Shader-based Software Renderer. Comput-
ers & Graphics 37, 1 (2013), 12–20. 1

[mdn18] Hello GLSL. https://developer.mozilla.org/
en-US/docs/Learn/WebGL/By_example/Hello_GLSL (ac-
cessed January 2018), 2018. 1

[Par14] PARISI T.: Programming 3D Applications with HTML5 and We-
bGL. O’Reilly Media, Inc., 2014. 2

[RME14] REINA G., MÜLLER T., ERTL T.: Incorporating Modern
OpenGL into Computer Graphics Education. IEEE Computer Graph-
ics and Applications 34, 4 (2014), 16–21. 1

[Tho13] THOMAS G.: WebGL Lesson 1–A triangle and a square.
https://github.com/gpjt/webgl-lessons/blob/
master/lesson01/index.html, 2013. 1

[TRK17] TOISOUL A., RUECKERT D., KAINZ B.: Accessible GLSL
Shader Programming. In EG 2017 - Education Papers (2017), Bourdin
J.-J., Shesh A., (Eds.), The Eurographics Association. 1

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

https://developer.mozilla.org/en-US/docs/Learn/WebGL/By_example/Hello_GLSL
https://developer.mozilla.org/en-US/docs/Learn/WebGL/By_example/Hello_GLSL
https://github.com/gpjt/webgl-lessons/blob/master/lesson01/index.html
https://github.com/gpjt/webgl-lessons/blob/master/lesson01/index.html

