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We study the thermal depinning of single fluxons in rings made of Josephson junctions. Due to thermal
fluctuations a fluxon can be excited from its energy minima and move through the array, causing a voltage
across each junction. We find that for the initial depinning, the fluxon behaves as a single particle and follows
a Kramers-type escape law. However, under some conditions this single-particle description breaks down. At
low values of the discreteness parameter and low values of the damping, the depinning rate is larger than what
the single-particle result would suggest. In addition, for some values of the parameters the fluxon can undergo
low-voltage diffusion before switching to the high-voltage whirling mode. This type of diffusion is similar to
phase diffusion in a single junction but occurs without frequency-dependent damping. We study the switching
to the whirling state as well.
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I. INTRODUCTION

In past years many works have been devoted to the study
of extended discrete nonlinear systems. On one hand, it is
important to deepen our knowledge on the general properties
of such systems since they often have application to many
different physical situations. On the other hand, many physi-
cal systems are well described by nonlinear discrete models.
In this field, the emergence of the soliton concept for in-
stance �in the continuous and its discrete counterparts� was
paradigmatic.1,2 A well-known example of a model system
supporting this type of nonlinear excitations is the discrete
sine-Gordon equation �also called Frenkel-Kontorova
model�.3–5

A Josephson-junction �JJ� array is, by construction, a dis-
crete system made of interacting nonlinear solid-state de-
vices. JJ arrays are an example of physical systems with
great fundamental and technological interest which are well
described by discrete nonlinear models.6,7 From the experi-
mental point of view, Josephson junctions are a privileged
place to study solitons and to explore their possible
applications.8

Among the many different geometries for a JJ array the
so-called Josephson ring �a set of JJ connected in parallel in
a closed array, forming a ring, see Fig. 1� is well described
by a discrete sine-Gordon equation and supports nonlinear
discrete solitons or kinks, usually called fluxons in this
context.9 Thus, many studies of the discrete sine-Gordon
equation, or studies of the role of kinks in nonlinear arrays,
have direct application when studying JJ rings. Conversely
the study and modelization of JJ rings allow exploration of
different issues concerning the behavior of these nonlinear
phenomena.

Figure 1 shows a schematic of a Josephson ring with 9
junctions. When cooled below the superconducting critical
temperature an integer number of magnetic-flux quanta, flux-
ons, can be trapped in the ring. Then, the physical properties
of the array are dominated by the presence of the fluxons in

the system. The I-V curve of the array shows the mean volt-
age across the array as a function of a constant external cur-
rent applied to every junction of the array. When current is
applied, the array remains superconducting up to a certain
critical value which defines the critical current of the array.
In the presence of fluxons this current corresponds to the
fluxon depinning current. At this current, the fluxon starts to
move around the array and finite voltage is measured.

In many cases the energy exchange between the system
and the environment is relevant, so thermal fluctuations have
to be considered.7 Because of this, at finite temperature the
value of the depinning current and the shape of the I-V curve
can be strongly affected by thermal fluctuations. Motivated
by recent experiments on the thermal depinning and dynam-
ics of fluxons �kinks� in small rings that are made of nine
junctions,10 in this work we numerically explore some of
these issues. In addition, in some cases the fluxons can be
understood as particles on a substrate periodic potential.

The main objective of this paper is to study numerically
the thermal depinning of a single fluxon in a JJ ring and
compare it with numerical simulations and analytical predic-
tions for the case of a single particle. We have found excel-
lent agreement in many cases. However, under some condi-
tions the single-particle description fails. In addition, for

FIG. 1. Left: scheme of the JJ ring with planar geometry. Lines
are for superconducting wires and crosses are for Josephson junc-
tions. Right: phase configuration profile �top� and magnetic flux
�bottom� for a fluxon in JJ ring.
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some values of the parameters the fluxon can undergo low-
voltage diffusion before switching to the high-voltage whirl-
ing mode. This type of diffusion is similar to phase diffusion
in a single underdamped junction but occurs without
frequency-dependent damping.

II. EQUATIONS

Josephson junctions are made of two superconducting
materials separated by a thin insulating barrier. Driven by an
external current, this system behaves as a solid-state nonlin-
ear oscillator and is modeled by the same dynamical equa-
tions that describe a driven pendulum:7 i= �̈+��̇+sin �
+����. Here �, the variable that describes the behavior of the
junction, is the gauge-invariant phase difference of the super-
conducting order parameter at both sides of the junction. In
this equation current is normalized by the junction critical
current �Ic� and time is normalized by the junction plasma
frequency, �p=�2�Ic /�0C ��0=h /2e is the magnetic-flux
quantum and C is the junction capacitance�. � is an impor-
tant parameter which measures the dissipation in the system
��=��0 /2�IcCR2, with R as the effective resistance of the
junction�. The last term, ����, describes the effect of thermal
noise in the dynamics �Johnson current noise� and satisfies
������=0 and �����������=2�T	��−���, where we use T for a
normalized temperature T=kBTexp /EJ �with EJ as the Joseph-
son energy EJ=�0IC /2��. The normalized dc voltage v,
which gives the response of the system to the external
current, is defined by v=Vdc / IcR= ��0 /2�IcR��d� /dt�
=��d� /d��.

As previously stated, the JJ ring consists of a series of
individual junctions connected in parallel. Such system can
be thought of as a series of coupled pendula. Following the
usual model for the system, the equations for an array made
of N coupled junctions driven by the same external current
are given by9

�̈ j + ��̇ j + sin � j + � j��� = 
�� j+1 − 2� j + � j−1� + i . �1�

Index j denotes different junctions and runs from 1 to N. The
new parameter 
 accounts for the coupling between the junc-
tions which, in the framework of this model, occurs between
neighbors and has an inductive character 
=�0 /2�IcL, with
L as the self-inductance of every cell in the array. Boundary
conditions are defined by the topology of the array �here we
consider circular arrays� and the number M of trapped flux-
ons in the system: � j+N=� j +2�M.

In this paper we will consider the case of a single fluxon.
We have studied different sizes for the array, but here we will
present results for an array made of nine junctions, which are
similar to those being experimentally studied. We will also
study different values of 
 and restrict our interest to under-
damped arrays biased by a dc current at a broad range of
temperatures.

III. RESULTS

In this section we are going to present numerical simula-
tions of the dynamics of one fluxon in a Josephson ring and
one particle in a periodic potential. We will also show nu-
merical calculations from single-particle thermal escape
theory.

FIG. 2. �Color online� I-V curves for one fluxon in a nine-junction ring with 
=0.4 at �=0.01 �left�, �=0.1 �middle�, and �=1.0 �right�.
Each figure shows five different temperatures �T=0,0.002,0.01,0.02,0.1�.
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A. I-V curves: Damping regimes

Figure 2 shows single I-V curves for one fluxon in a nine-
junction Josephson ring with 
=0.4. In this case the width of
the fluxon is close to 2, so it is well localized in the array and
discreteness effects are important.11 Curves were simulated
at three different values of damping and five temperatures.
Current was increased from zero to some maximum at an
average ramp equal to 8

3 �10−7 �in normalized units�.
Let us look first at the T=0 curves. If we start at zero bias,

in all the cases the fluxon is pinned to the array until the
so-called depinning current idep

0 is reached �for 
=0.4, idep
0

�0.155�. Above this current very different I-V characteris-
tics are observed depending on the value of the damping.

At small damping the system switches from the v=0 state
to a high-voltage ohmic state �v= i�, where all the junctions
rotate uniformly �whirling branch�. The damping is so small
that when the fluxon moves through the array it excites all
the junctions to the high-voltage state. In this voltage state
the fluxon is totally delocalized in the array. For clarity, we
have shown only the curves for increasing current. If current
is decreased from the high-voltage state the junctions retrap
at a small value of the current �mostly defined by ��. The
curve is hysteretic and shows bistability for a wide range of
currents.

At intermediate values of damping the dynamics is much
more complex. Now the I-V curve shows a low-voltage re-
gion dominated by a series of steps which correspond to
resonances between the fluxon velocity and the linear modes
of the array. These resonances have been the object of great
attention in the past.9,12–17 For these currents the fluxon
moves around the ring in a localized manner. This regime
persists up to a given value of the current for which the
fluxon reaches a high velocity and all the junctions switch to
the high-voltage part of the curve. At moderate damping the
IV curve can also be multistable with hysteresis loops on
every step.

At high values of the damping dissipation governs the
dynamics, multistability disappears, and the voltage in-
creases from zero without discontinuities and jumps as soon
as current reaches the depinning value. In this part of the
curve a localized fluxon is moving around the ring and volt-
age is related with the fluxon velocity. For currents close to 1
�in normalized units�, it starts the transient to another regime
where the fluxon delocalizes and all the junctions rotate and
contribute to the overall voltage in the array.5

Figure 2 also shows the dynamics of the array in the pres-
ence of thermal noise. As can be seen in the figure, the first
thermal effect is that the fluxon depins at smaller currents.
For small damping we find that if temperature is high
enough, noise also induces a fluxon diffusion branch, which
we will discuss later in this paper. At moderate damping, the
low-voltage resonances are rounded, and at high-enough
temperature voltage increases smoothly from zero to some
value on the fluxon diffusion branch and then switches to the
high-voltage region of the I-V curve. At high damping tem-
perature causes a rounding of the curve.

We will study how temperature affects the I-V curve at
low damping, since this is the case for the experimental sys-
tem we are trying to model. Usually the depinning current is

experimentally defined as the current for which measured
voltage is above a certain threshold. We have followed the
same definition in our simulations. This is a good definition
in the low-damping and low-temperature regime where the
system switches between two very different voltage values
so a threshold independent current is expected. However, the
election of the threshold voltage is not trivial. A small thresh-
old can give problems at large temperatures where voltage
fluctuations are also large. A large threshold is not a good
choice since it ignores possible low-voltage states such as the
fluxon diffusion one. If low-voltage states are present we can
distinguish between the depinning current idep and the
switching current isw, where depinning marks the end of the
superconducting state and switching marks the end of the
transition to the high-voltage branch. At very high tempera-
tures noise can reach the threshold level and first switching is
suppressed. To study this issue we have used in our simula-
tion three or five different thresholds and compared results
for all of them.

B. Šidep(T)‹

The depinning current is a stochastic variable with a given
probability distribution. We present results for the mean
value of the depinning current �idep� and its standard devia-
tion �. Results were obtained after the numerical simulation
of the dynamical equations of the system for 1000 samples.
We used different values of damping � �typically from 0.001
to 0.1� and coupling 
 �usually from 0.2 to 1.0�. The number
of junctions in the array is N=9. Another important param-
eter of the simulations is the current ramp; in our case this
ramp changes from one simulation to another but it is of the
order of 1�10−7.

Figure 3 shows results for �=0.01 and five different val-
ues of the coupling �
=0.2, 0.4, 0.6, 0.8, and 1.0�. The main
physical properties of the fluxon in the array change impor-
tantly with the value of 
. Thus, the zero-temperature depin-
ning current of the array idep

0 decreases by a factor of 30 from


=0.2 to 1.0 �see Table I�. In order to compare the five
curves, in Fig. 3 both axes have been scaled by the value of
the zero-temperature depinning current for every case.18 We
see that once scaled all curves are similar showing that in
this range of parameters these results can be understood in a
unified manner.

In the figure we see that �idep� decreases to zero as an
effect of temperature. All the curves follow the same behav-
ior, but at high temperatures the small 
 curves slightly de-
viate from the others. For temperatures of the order of the
barrier, thermal fluctuations dominate the dynamics and the
depinning current goes to zero. In fact, at high temperatures
there is no good definition of depinning current since differ-
ent thresholds may give different results. With respect to the
standard deviation, we can see that it grows with T2/3 as
predicted by standard thermal activation theory and reaches a
maximum at high temperatures, when �idep� has an inflection
point close to �idep�→0. Then the standard deviation de-
creases since all escape events happen in a narrow range of
current values.
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C. Fluxon as a single particle

When studying the dynamics of one fluxon in the array it
is very common to use the picture of this extended and col-
lective object as a single particle.3,4,19,20 This approach has
been extensively used in the past and, as we will see, it is
very useful although not exact.

Let us consider a new variable representing the center of
masses of the fluxon or the position of the fluxon in the array.
Then, in the simplest approach, the dynamics of a fluxon in a
ring can be approached by the dynamics of a driven damped
massive particle experiencing a sinusoidal substrate potential
�Peierls-Nabarro potential� and subjected to thermal fluctua-
tions,

mẌ + �mẊ + idep
0 sin X = i + ���� , �2�

where

������ = 0 and ����������� = 2m�T	�� − ��� . �3�

In this simple approach we are neglecting, for instance,
the spatial dependence of the mass effective damping due to
the other degrees of freedom of the system and higher-order
terms in the expansion of the substrate potential for the
fluxon. Table I gives a relation of numerically computed val-
ues of some of the parameters of the fluxon and its effective
potential in the single-particle picture: EPN is the zero current
potential barrier; �PN

2 is the squared frequency for small am-
plitude oscillations of the fluxon around equilibrium; m is the
fluxon effective mass at rest �computed as m=EPN /2�PN

2 �,
and idep

0 is the depinning current. For a perfect sinusoidal
potential we should get idep

0 =EPN /2. The exact results are
close to it.

Figures 4 and 5 show, for lambda=0.4 and 0.8 �in both
cases �=0.01�, the comparison between the results for the
fluxon in the array, numerical simulations of the depinning of
a single particle in a sinusoidal potential �Eq. �2��, and a
theoretical calculation based on analytical results for the
thermal activation rate of particles in sinusoidal potentials in
the low-damping regime.21–26 In the figure we plot the result
computed from the Büttiker-Harris-Landauer equation for es-
cape rate at 
=1 �Eq. �3.11� in Ref. 23�. We have checked
that a very close result �indistinguishable at the scale of the
figure� is got when using 
=1.45 �Ref. 27� or the Mel’nikov-
Meshov theory.24

We can see that the single-particle simulations reproduce
the results for the fluxon in an excellent way at this value of
the damping in all the temperature range, although a small
deviation in a range of temperatures is observed for 
=0.4.
Theoretical estimations disagree at high values of T since
escape rate equations were obtained in the infinite barrier
limit �Eb�kBT�.

TABLE I. Fluxon parameters at different values of 
.


 EPN �PN
2 m idep

0

0.2 0.778 42 0.774 05 0.5028 0.384 82

0.4 0.309 74 0.447 75 0.3459 0.154 35

0.6 0.127 44 0.231 51 0.2757 0.063 67

0.8 0.055 39 0.117 21 0.2363 0.027 67

1.0 0.025 50 0.060 41 0.2110 0.012 725

FIG. 3. �Color online� Numerical calculation of normalized
�idep� and � versus normalized T at �=0.01 and five different values
of 
 �
=0.2,0.4,0.6,0.8,1.0�.

FIG. 4. �idep� and � versus T at �=0.01 and 
=0.4 for the
fluxon; and a single particle in a periodic potential, and comparison
with the theoretical prediction.
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The agreement shown in Figs. 4 and 5 does not occur for
other values of coupling and damping. For instance, for 

=0.4 and �=0.001 �Fig. 9—below� a deviation of the simu-
lated curve with respect to the theoretical prediction is found.
To study further such result we have done numerical simu-
lations at fixed T for different values of � and for 
=0.4
�T=0.01� and 0.8 �T=0.0018�.28 Results are shown in Figs. 6
and 7. There we can see that for 
=0.4 the fluxon results
deviate importantly from that expected for the single particle
�or the theory� when damping is decreased. However this is
not the case for 
=0.8. In this respect the degree of discrete-
ness of the system seems important. Such degree is measured
by the coupling parameter 
 �high 
 approaches the con-
tinuum limit of the system, and small 
 increases the dis-

creteness effects�. At small values of 
 effects due to other
degrees of freedom are more important, and if damping is
small such excitations persist longer in the system.

D. Fluxon diffusion

In Fig. 2 we have seen that at low damping and high-
enough temperature, a low-voltage branch appears in the I-V
curves before the escape to the full running state. In this
low-voltage state, the transport of the fluxon occurs through
a series of noise-induced 2� phase slips �or 2� /N depending
on the definition of the fluxon center of masses�, where every
jump corresponds to a fluxon which advances one cell in the
array. Such state cannot be understood in terms of the single-
particle picture. In analogy with the phase diffusion that oc-
curs in a single junction, we label this mode of transport
fluxon diffusion. In spite of the fact that we are in the low-
damping regime, the fluxon is able to travel along the ring
without exciting the whirling branch. Remarkably this is a
thermally excited state and it is not seen at low temperatures.

In Fig. 8 we show the time evolution of the phase of one
junction �junction 1� and a phase associated with the center
of mass of the fluxon defined as �= 1

N	 j� j to allow a better
comparison. Current values have been chosen in the low-
voltage branch. The random jumps of 2� for the junction or
2� /N for the fluxon phase � are easily observed.

We have also done numerical experiments to simulate the
jump from the diffusion branch to the full whirling state.
These simulations are done with a higher voltage threshold
but are otherwise similar to the previous experiments. Re-
sults for �=0.01 and 0.001 are shown in Fig. 9, where 

=0.4. We see that theory and single-particle results agree
quite well in all the ranges. At high-temperature thermal
fluctuations dominate, of the order of the barrier, and theo-
retical results do not apply. We also see that the standard
deviation increases with temperature, following the expected
law up to a certain value where it reaches a maximum and
then decreases when �idep� is close to zero.

However, in Fig. 9 we can also see that for the fluxon
curve there exists a value of T such that at higher tempera-
tures, the value of the current for which the array switches to
the whirling branch is temperature independent. This tem-
perature shows the emergence of a fluxon diffusion branch in

FIG. 5. �idep� and � versus T at �=0.01 and 
=0.8 for the
fluxon; and a single particle in a periodic potential, and comparison
with the theoretical prediction.

FIG. 6. �idep� as a function of � for 
=0.4 at T=0.01.

FIG. 7. �idep� as a function of � for 
=0.8 at T=0.0018.
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the I-V curve. Looking at I-V curves, it appears that the
switching current value is defined by some value of the
fluxon velocity. Comparing the standard deviation curve in
Fig. 9 to the similar one with the lower threshold in Fig. 4, as
expected, we can see that a peak occurs much earlier in
temperature for the jump from the diffusion state.

IV. DISCUSSION AND CONCLUSIONS

We have studied the thermal depinning of fluxons in small
Josephson rings at small values of damping. At zero tem-

perature, as current is increased, the system switches from a
superconducting zero-voltage state to a resistive state where
v= i. This happens at the so-called depinning current. Be-
yond this current there is no static configuration for one
fluxon in the array, and the fluxon starts to move. Due to the
low value of the damping, when fluxon goes through the
array, it causes the junctions to switch to a high-voltage state.
Then all the junctions do the same but with a phase differ-
ence that accounts for the presence of one quantum of flux
that is homogeneously distributed along the whole array.

Due to thermal fluctuations, in experiment, the value of
the measured depinning current changes from one IV to an-
other and only a probability distribution function has sense.
This function is usually characterized by its mean value and
its standard deviation. The main objective of this paper has
been to numerically study how these observables behave for
different system parameters �coupling 
, damping �, and
temperature T�.29 We have also compared these results with
numerical simulations and theoretical estimations for the de-
pinning of a single particle in a sinusoidal potential.

As expected, the mean value of the depinning or the
switching current decreases as temperature is raised. At low
temperatures the standard deviation follows the usual T2/3

law. At higher temperatures the ��T� function reaches a peak
that we can identify with the points on the �idep�T�� or
�isw�T�� curves at which the curvature changes sign �inflec-
tion point�.

Roughly speaking our results show that the depinning of
the fluxon can be understood in terms of the stochastic dy-
namics of a single particle in a tilted sinusoidal potential.

FIG. 8. 
=0.4, �=0.01, and T=0.1. Top: I-V curve showing the
small voltage fluxon diffusion branch. Medium and bottom: time
evolution of the phase of junction 1 �black line� and the phase of the
center of masses of the fluxon �gray line� divided by 2� at i
=0.005,0.01,0.02,0.05, and 0.07.

FIG. 9. �Color online� �isw� and � as a function of T at 
=0.4
for two different values of the damping �=0.01 and 0.001. We
show plots for the theoretical prediction �solid line�, the particle
�open symbols�, and the fluxon �solid symbols�.
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However, we have seen some unexpected effects that we
attribute to discreteness. For the case of small coupling �

=0.4 and smaller� we have seen an increasing deviation of
the fluxon depinning behavior from our expectations from
the single-particle picture. Arrays with a larger coupling are
closer to the continuous limit and discreteness effects are
smaller; here the single-particle picture works much better.

The other effect we have observed is the emergence at
small damping of a low-voltage thermally excited state that
we call fluxon diffusion. In such cases the zero-temperature
I-V curve does not show any resonance or low-voltage state,
and the system switches from zero voltage to the high-
voltage branch. However, after some temperature a low-
voltage branch is observed. The system first switches from
zero to this branch and then to the high-voltage state. At
higher temperatures the system first continuously increases
voltage from zero �then it is not clear how to define idep�, and
at larger currents it switches from the low-voltage state to the
high-voltage one. We have also seen that the values of damp-
ing and current for which this behavior is observed depend
importantly in 
 and also in the number of junctions in the
array, N.30

An important point of our work has been comparing our
numerical results with results based on the single-particle
picture. The main conclusion is that for most of the cases this
picture gives a good estimation of the fluxon depinning cur-
rent. In fact, in an experimental case, where the different
parameters �mainly 
, �, and Ic� are known with some im-
precision, it will be difficult to identify deviations from the
expected behavior. In addition, there are some points that are
difficult to address: the effective one-dimensional potential
for the fluxon in the array �Peierls-Nabarro potential� is not
purely sinusoidal, and the value of the fluxon mass is not
constant since it depends on the fluxon position and the cur-
rent value. We are also neglecting all the system degrees of
freedom except one, and we know that in some cases this is
not valid: for instance, in understanding resonant steps which
are due to coupling between the fluxon velocity and the lin-
ear waves of the discrete array or in understanding the fluxon
diffusion branch. We have also considered the expression for
the escape rate in a multidimensional case. In this expres-
sion, usually, the attempt frequency depends on the fre-
quency of all the stable modes in the minimum and the
saddle.25 We have computed such numbers and checked that
the maximum error is smaller than 7% �and occurs for 

=0.125�.

Our numerical results for the single particle agree pretty
well with the predictions from Kramers theory for escape
rate except for some limits. Disagreement at high tempera-
tures is expected since theoretical expressions are computed
in the infinite barrier limit of the system �Eb�kT�. This limit
is not fulfilled at high temperatures. This is also true at small
temperatures, where most of the escape events occur at cur-
rents very close to idep where the barrier is also very small.
We have checked that the Eb /kT ratio in this case is also
small. To finish we have to mention the unexpected disagree-
ment at small values of �. We are currently studying further
such results.

In this paper, we have presented results for the mean
value and standard deviation of the fluxon depinning current

probability distribution. It is also possible to describe the
data in terms of an escape rate, which is a magnitude that
does not depend on experimental details such as the ramp
rate of the current. Escape rate can be easily computed from
this probability distribution function.21 A good statistic is
usually required to have satisfactory results. For a limited
number of temperatures we have computed depinning cur-
rent values for 10 000 samples and extracted from the results
the escape rate values. Results are shown in Figs. 10 and 11.
As expected from Figs. 4 and 5, the agreement between nu-
merical results for the fluxon and the particle and theory is
excellent at 
=0.8 and at 
=0.4 and low temperatures. The
fluxon results slightly deviate at 
=0.4 and T=0.01, which is
close to the region with a fluxon diffusion branch. We have
also computed �Fig. 12� the probability distribution function
and escape rate for the switching from the low-voltage
fluxon diffusion state to the high-voltage whirling mode, see
also Fig. 9.

In the single-particle picture, or the resistive and capaci-
tively shunted junction �RCSJ� model for a single junction, it
has become generally accepted that diffusion cannot coexist

FIG. 10. Escape rate as a function of the current at three differ-
ent temperatures �1�10−2, 1�10−3, and 1�10−4� for 
=0.4 and
�=0.01.

FIG. 11. Escape rate as a function of the current at two different
temperatures �1�10−3 and 1�10−4� for 
=0.8 and �=0.01.
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with hysteresis. This was elucidated nicely in Kautz and
Martinis31 through phase-space arguments. Simply put, if the
value of applied current is sufficient to allow a stable running
state to coexist with the fixed points of zero voltage, the
basins of attraction for that running state necessarily sepa-
rates the basins of attraction for any two neighboring fixed
points. Phase jumps between two fixed points are thus for-
bidden, as the system must first pass through the basin of
attraction for the running state. While we have shown in the
previous section that the initial escape of the fluxon from its
minima can be explained by thermal activation of a single
particle, the fluxon diffusion state in the I-V curves of Fig. 2
cannot be explained in a similar way.

In the original single-junction experiments on phase dif-
fusion, the coexistence of phase diffusion and hysteresis was
explained by the presence of frequency-dependent damping
from the junction leads. A simple model of frequency-
dependent damping is a series RC circuit in parallel with the
junction, which adds an extra degree of freedom to the phase
space for the junction dynamics. This extra dimension re-

solves the above-mentioned issue regarding the nonoverlap-
ping basins of attraction. The main result of the paper is the
observation of fluxon diffusion in our simulations without
frequency-dependent damping, which has not been included
in our equations. Instead of the extra dimension introduced
by frequency-dependent damping, fluxon diffusion must oc-
cur because of the additional degrees of freedom from the
multiple junctions in the array. We plan to explore the phys-
ics of this different diffusion mechanism in future experi-
ments and simulations.

When studying the behavior of the system at different
temperatures we have seen that the mean value of the distri-
bution of the switching current from the fluxon diffusion
branch is almost constant, and the standard deviation is very
small. Comparing the standard deviation curve in Fig. 9 to
the similar one with the lower threshold in Fig. 4, we also
see that a peak occurs much earlier in temperature for the
jump from the diffusion state. This peak in the standard de-
viation is also reminiscent of experiments on single
junctions,32–34 where a peak in the standard deviation indi-
cated the collapse of thermal activation and the onset of dif-
fusion.

To finish we want to mention that to our knowledge there
are no experimental or numerical results studying systemati-
cally the thermal escape of fluxons or solitons in discrete
arrays. However we want to mention here the work of Wall-
raff et al.35 on vortices in long JJ. With respect to theoretical
advances we also want to cite a recent work36 where major
differences between the macroscopic quantum tunneling in
long JJs from tunneling of a quantum particle are reported.
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