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Josephson junction simulation of neurons
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With the goal of understanding the intricate behavior and dynamics of collections of neurons, we present
superconducting circuits containing Josephson junctions that model biologically realistic neurons. These “Jo-
sephson junction neurons” reproduce many characteristic behaviors of biological neurons such as action po-
tentials, refractory periods, and firing thresholds. They can be coupled together in ways that mimic electrical
and chemical synapses. Using existing fabrication technologies, large interconnected networks of Josephson
junction neurons would operate fully in parallel. They would be orders of magnitude faster than both traditional
computer simulations and biological neural networks. Josephson junction neurons provide a new tool for
exploring long-term large-scale dynamics for networks of neurons.
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How do large networks of neurons organize, communi-
cate, and collaborate to create the intrinsic behaviors and
dynamics of the brain? Over the past century, individual neu-
rons have been studied at the cellular, compartmental and
molecular level. Synaptic models, while still somewhat rudi-
mentary, accurately reflect many basic features of synapses
and how they modify signals between neurons. Today, it is
becoming feasible to explore networks of neurons behaving
as units, how they synchronize, provide top-down or
bottom-up feedback, and encode sensory information. This
exploration is an important step toward understanding the
brain, which will require multiscale analysis with models of
collective behavior at many different levels simultaneously.

As part of this effort it is important that we understand
how networks of neurons behave on the scale of thousands to
tens of thousands of neurons, the size of a typical neocortical
column. Large-scale digital simulation projects such as the
Blue Brain [1,2] and PetaVision [3] projects have demon-
strated that the limitations of inherently serial computer pro-
cessors can be improved by effective parallel computing de-
signs. But simulation time remains a significant hurdle to
including biologically realistic features in large-scale simu-
lations. Analog simulations using very-large-scale-integrated
(VLSI) circuitry to mimic neurons and synapses are improv-
ing in realism and speed, but they are still limited by com-
plexity and power consumption. We propose an alternate di-
rection for analog simulation of large-scale networks of
biologically realistic neurons. Using superconducting Jo-
sephson junctions to model neurons connected with real-time
synaptic circuitry, we can explore neural network dynamics
orders of magnitude faster than current digital or analog
techniques allow. Using these circuits, we hope to learn
about neural interactions such as synchronization, long term
dynamics and bifurcations, feature identification, and infor-
mation processing. The long term goal is to understand group
behavior of neurons sufficiently to use them as building
blocks for studying larger scale neural networks and brain
behavior.

Our basic circuit unit (the JJ Neuron) involves two Jo-
sephson junctions connected in a loop as shown on the left
side of Fig. 1. The individual junctions behave phenomeno-
logically like ion channels: one corresponds to a depolarizing

1539-3755/2010/82(1)/011914(8)

011914-1

PACS number(s): 87.19.11, 87.19.lm, 87.19.1j

current (such as Na*), and the other to a hyperpolarizing
current (such as K*). Enhancements are possible, of course,
and the inclusion of a third junction could allow for behav-
iors such as bursting that generally require at least three cur-
rents. The circuit displays many features of biologically re-
alistic neurons such as the evocation of action potentials
(firing) in response to input currents or pulses, input strength
thresholds below which no action potential is evoked, and
refractory periods after firing during which it is difficult to
initiate another action potential [4,5].

The JJ Neuron is a variation of well developed rapid
single flux quantum (RSFQ) [6-8] circuitry and is thus
straightforward to fabricate. RSFQ circuits using 20 000
junctions have been fabricated [9], so we estimate that a
single chip could model as many as N=10 000 neurons,
about the number of neurons in a cortical column. For larger
brain regions, chips could be connected together. A simulated
action potential takes about 50 ps, and all neurons act in
parallel. Table I shows a comparison of the speed of a JJ
neuron with that of biological neurons and digital simula-
tions using established models. The figure of merit displayed
is the number of action potentials per neuron per second.
Speed depends on the arithmetic complexity of the model
employed, the number N of neurons simulated and their con-
nectivity. We show speeds for sparse (no connections be-
tween neurons) and dense (all neurons connected to all oth-
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FIG. 1. Circuit diagram for the JJ Neuron (left loop) connected
to a model chemical synapse (right loop). In general, many syn-
apses could connect to a single JJ Neuron. Orientation of junction
phases is chosen for clockwise current in the left loop.
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TABLE 1. Approximate number of action potentials (APs) per neuron per second for digital simulations,
mammalian experiments, and the JJ Neuron. FLOPs/AP is an estimate of the floating point operations
required for one AP in each digital model [4], and we assume a conservative 2 FLOPs per connection. We
assume a CPU speed of 10° FLOPs/second for the digital simulations. The right three columns describe the
speed of a network with N neurons. Sparse and dense connectivity represent extreme estimates of the
computational time due to connections between neurons. Connections have no speed impact on experimental

and JJ Neuron models as they are naturally parallel.

AP/(neuron/s)
Model FLOPS/AP N=1 N=1000 (sparse) N=1000 (dense)
Integrate and Fire 5 2.0x108 2.0X10° 5.0 X 102
FitzHugh-Nagumo 72 1.4x107 1.4x10* 4.8X 102
Izhikevich 13 7.7 X 107 7.7 %104 5.0 X 102
Hindmarsh-Rose 120 8.3 % 10° 8.3%10° 4.7x10%
Hodgkin-Huxley 1200 83%X10° 8.3 X 107 3.1Xx10?
Mammalian CNS 1.0X 103 1.0X 103 1.0%x 103
JJ Neuron 2.0% 100 2.0X10'0 2.0 10

ers) networks as two extremes. While our estimates of speed
are crude, they suggest that JJ Neurons are several orders of
magnitude faster than either digital simulations or biological
systems. This speed is due to three advantages: (a) Josephson
junctions have a shorter characteristic time than the conven-
tional transistors used in computer processors; (b) the JJ
Neuron takes fewer cycles to simulate an action potential
than digital simulations; and (c) JJ Neurons compute in par-
allel using analog connections that do not affect computation
time.

This simple circuit simulates a single-compartment (space
clamped) neuron and follows the spirit of mathematical neu-
ron models such as Hodgkin and Huxley [10], FitzZHugh-
Nagumo [11,12], Morris-Lecar [13], Hindmarsh-Rose [14]
and Izhikevich [4]. Each of these models describes the mem-
brane potential (voltage) of the neuron as it varies in time.
They also model, to varying degrees of detail, the ion chan-
nels which control the voltage via the flow of ions across the
membrane. The ion channels open and close depending on
the voltage thus providing the nonlinear feedback character-
istic of neurons. Models differ in how many ion channels are
described and their dynamic complexity. As with many of
these mathematical models, our intent is not to model ion
channel dynamics or chemical reactions in detail but rather
to provide basic biological realism which allows us to ex-
plore the impact of network topology and connectivity
strength.

The JJ Neuron attempts to mimic important neuronal be-
haviors: action potentials, firing thresholds and refractory pe-
riods. The primary identifying feature of a neuron is the ac-
tion potential (AP), i.e., a spike or pulse in voltage across the
neuron membrane as the neuron “fires.” AP firing rates and
interspike interval distributions are used to encode informa-
tion in the brain [15]. APs require at least two independent
dynamic variables, generally two voltage-gated ionic cur-
rents such as Na™ and K*. The inward Na* current produces
the rising phase of the pulse, while the outward K* current
restores the membrane to its resting potential [16]. These
currents have different time scales, resulting in the character-

istic shape of the action potential. The dynamics of biologi-
cal voltage-gated ionic currents are complex, and subsequent
models have substantially expanded on those originally pro-
posed by Hodgkin and Huxley [17,18]. The JJ Neuron, like
most neuron models, simplifies the voltage dependence of
ionic currents, modeling them by junctions whose dynamics
are governed by familiar second order differential equations.
It does include two ionic channels and supports APs. Other
important features of a neuron model include the firing
threshold and refractory period. The firing threshold is a
level of external stimulus below which the response is neg-
ligible, while above it an AP is triggered. The refractory
period is the period of time after triggering an AP during
which it is difficult to evoke a second one. Biophysically, the
refractory period is determined by the time it takes the ion
channel proteins to “reset” to their initial configurations.
Though there are many different precise definitions of how
to measure the refractory period, the important characteristic
for a spatially homogeneous neuron model is an upper limit
on the frequency of repeated firing.

I. SINGLE NEURON MODEL

Josephson junctions consist of two superconductors sepa-
rated by a thin insulating barrier [19]. Electrons in each su-
perconductor are described by a coherent wave-function with
a definite phase. The phase difference from one side of the
barrier to the other is the so-called Josephson phase ¢, which
controls all of the electrical properties of the junction, in-
cluding the junction’s voltage and current. Current can flow
through the device without creating a voltage. This so-called
supercurrent can be increased to the junction’s critical cur-
rent [, above which a voltage develops given by V
=(Dy/2m)dp/dt, where ¢ is time, ®y=h/e is the flux quan-
tum, s is Planck’s constant and e is the electron charge.
Normalizing current to this critical current, the current
through a junction i depends on the phase ¢ through the
relation [20]:
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i=¢+Td+sin(¢p). (1)

The dot notation refers to differentiation with respect to nor-
malized time 7, where 7=1>®,C/2l,, with C the capaci-
tance of the junction. The normalized damping parameter is
[?=d,/27I,R*C, where R is the resistance of the junction.
The critical current, conductance (1/R) and capacitance of a
junction are assumed to scale linearly with the cross-
sectional area (A) of the junction.

Equation (1) displays a useful analogy between the dy-
namics of a junction and that of a pendulum, allowing us to
describe the action potential-like pulse generated by the cir-
cuit. Equation (1) is exactly the equation of motion for a
damped and driven pendulum, where ¢ represents the angle
of deflection, I' is the normalized drag constant, and i repre-
sents a driving torque. If i is constant in time, long term
solutions include both static tilting (gravity balancing the
torque) and whirling modes (where the torque overcomes
gravitational forces). A third motion is also possible that
combines these two. For appropriate parameters, and time
dependent torque i, the pendulum will whirl over just once
and settle back to a tilted state. In a Josephson junction, the
phase whirling over just once creates a magnetic flux pulse,
called a single-flux-quantum pulse (SFQ pulse) [6]. This
pulse has a similar shape and area each time it is stimulated.
Pulses of this type form the action potentials in our neuron
model.

The JJ Neuron circuit shown in Fig. 1 connects two Jo-
sephson junctions in a superconducting loop. This basic
structure is a simplified superconducting digital component
from RSFQ logic circuitry called a “dc-to-SFQ converter”
[7]. We call the two junctions the pulse junction and the
control junction, denoted by subscripts p and c, respectively.
Two incoming currents (normalized to I,) are called the
input current i;, and the bias current i, which provides en-
ergy to the circuit. The signal to the synapse is the voltage
across the pulse junction vp=¢p, though the magnetic flux
through the loop could be used for an inductive synapse
circuit. The figure shows a model synaptic circuit connected
above the pulse junction and thus driven by v,. The circuit
parameters are the indicated branch inductances Ly, L, and
L, which we scale by their sum L, to obtain A, A, and
A.. Using current conservation and fluxoid quantization [20],
we obtain two equations of motion,

¢p + Fd)p + Sin(d)p) = ip == )\(d)c + ¢p) + Asiin + (1 - Ap)iba
(2)

77[4)( + Fd’c + Sin(d’c)] =i.=- )\(qu + (vbp) + Asiin - Apib-
3)

with coupling parameter N=®,/27L, 1, and geometric
parameter 7=A./A,. To make the comparison with RSFQ
circuitry more clear, dc-to-SFQ converters usually have A;
~1, A,=A,=0 and <1, whereas typical parameters for a
JJ Neuron are A_.=0, AS=AP=O.5, and n=1.

To explain how the circuit provides an action potential
and then recharges to become ready to provide another, we
describe the mechanism for generating a typical pulse. In
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equilibrium with i;,=0, the bias current splits between pulse
and control junctions and is large enough to put each junc-
tion just below its critical current. They are primed to
achieve a whirling state. For i;,> 0, the input current acts to
push the control junction away from whirling while pushing
the pulse junction toward the whirling state. When the input
current exceeds a threshold, it initiates the action potential: A
voltage appears across the pulse junction creating magnetic
flux in the loop which is analogous to a neuron’s membrane
potential rising. The flux in turn induces current in the loop
pushing the control junction closer to its whirling state. As
the flux builds, the control junction starts to whirl, draining
the flux in the loop, ensuring that the pulse junction stops
whirling and restoring the system so it can fire again. This
process can repeat so long as the incoming current is held
above threshold levels. The time lag between the pulse junc-
tion whirling, flux building and control junction responding
to that flux is what creates the refractory period during which
it is extremely difficult to initiate another pulse. The analogy
goes beyond the membrane potential’s relation to the flux
D=\(¢p,+ ¢p.) normalized by L1, The pulse voltage v,
is analogous to a polarizing ionic current such as Na* while
the control voltage v,. is analogous to a hyperpolarizing ionic
current such as K.

The flux @ in the JJ Neuron corresponds to the neuron
membrane potential V,,. Voltages across the pulse junction,
vp, and control junction, v, correspond to the Na* current Iy,
and K* current Ig, respectively. The input current i;, corre-
sponds to incoming postsynaptic current /,,,,. With these cor-
respondences, the equation relating change in membrane po-
tential to ionic currents can be written for the JJ Neuron

1.
XCI) =0,+0,. (4)
The analogous equation for a neuron is the equation for a
space-clamped two-channel neuron [16],

CV,y=Ig+Ing+ Ly (5)

The equations differ in that the synaptic current in Eq. (5),
I,,,, does not appear analogously as i;, in Eq. (4). Synaptic
current does, however, appear implicitly since the phases b,
and ¢, depend on i;, through Egs. (2) and (3). The results of
simulations below suggest that these terms have qualitatively
similar effects. Like biological APs, the JJ Neuron AP is
produced by the interaction of activating and restoring pro-
cesses.

II. SINGLE NEURON CHARACTERISTICS

Single-neuron characteristics include the action potential,
firing threshold and refractory period. JJ Neurons reproduce
all three of these behaviors. Figure 2 shows the voltage trace
and ionic currents for APs in the JJ Neuron and Hodgkin-
Huxley models.

Figure 3 demonstrates the firing threshold. It shows the
response to a brief current pulse of increasing strength along
with an inset showing the threshold dependence of voltage
peak on stimulus strength. Stimuli below threshold evoke a
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FIG. 2. (Color online) (a) Time profile for action potentials in
the JJ Neuron model. Parameter values for JJ Neuron calculations
are A=0.1, '=1.5, A;=A,=0.5, »=1. Input dc current is i;,=0.21.
(b) Time profile for action potentials in the Hodgkin-Huxley model.
The flux (black solid) in the JJ Neuron corresponds to the mem-
brane potential (black solid) in the Hodgkin-Huxley model. Simi-
larly, the voltages v, (red dashed) and —v, (blue dot-dashed) in the
JJ Neuron model correspond to the currents —Iy, (red dashed) and
Ix (blue dot-dashed) in Hodgkin-Huxley model. Parameter values
for all Hodgkin-Huxley calculations are C,,=1.01 uF/cm% Gy,
=120 mS/cm?; Gg=36 mS/cm?* G,=0.3 mS/cm?; Ey,=50 mV;
Ex=-77 mV; E;=-54.4 mV; and T=18.5 °C unless stated other-
wise. In this simulation an external stimulating current of 236 nA is
applied. The Hodgkin-Huxley neurons are modeled as isopotential
cylinders with lengths and diameters of 500 wm.

small (subthreshold) response, while above the threshold full
APs occur.

Response to dc input is also revealing. Sufficiently large
input induces repetitive spiking. The frequency of repetitive
spiking at onset determines the Hodgkin class [23,24] of the
neuron model. Class 1 neurons have infinite period at onset
and the frequency increases with input strength. Class 2 neu-
rons have a well defined spike frequency largely independent
of the input strength. The JJ Neuron is class 2 for I'<<1 and
class 1 for I'>1. While a full bifurcation analysis is beyond
the scope of this paper, this behavior reflects the bifurcation
structure of a single junction with increasing current. The
single junction for I'>1 leads to an infinite period bifurca-
tion while for I'<<1 there is a bistable region ending in a
saddle node bifurcation which causes the quiescent state to
jump to an oscillating solution with established frequency
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FIG. 3. (Color online) The threshold response of flux time-traces
as the strength of impulse input signals increases. Stronger inputs
(initially higher curves) lead to action potentials. The inset graph
shows how peak response depends on the strength of the input
pulse. Parameter values as for Fig. 2(a) except I'=1.0. Input current

is a single square pulse of width 5 and varied height initiated at ¢
=30.

[25]. Figure 4 shows the frequency response to increasing
input using a slowly ramped input current. The slow ramp
effectively acts as a dc input on short time scales so the
progression from quiescence to repetitive spiking is clear.
For I'=0.9 the frequency is independent of input strength
(class 2) while for I'=1.5 the frequency is zero at onset and
increases with input strength (class 1).

Figure 5 demonstrates the refractory period of the JJ Neu-
ron. Refractory period has many different precise definitions
in the literature. In addition to the distinction between rela-
tive refractory period (when a super threshold current
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FIG. 4. (Color online) Frequency response to increased input
strength. The input current (red linear) and flux response (black
oscillating) curves show the frequency response due to a slow linear
increase in input strength. Parameters values are as in Fig. 3 except
for I'. The top plot (I"'=0.9) shows frequency largely independent of
input strength after onset of repetitive spiking. The bottom plot
(I'=1.5) shows a low frequency at onset which increases as the
input strength in increased. This demonstrates that the JJ Neuron
can model either class 1 or class 2 neurons depending on parameter
values.
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FIG. 5. (Color online) (a) Response to twin pulse inputs with
delay shows the refractory period. On the left, the time of the first
(lower blue) and second (upper red) response peak is graphed
against the delay between input pulses. The vertical dashed line
represents the delay below which no second pulse is created. On the
right, time profiles are shown for input currents (green dashed) and
output voltages (blue solid). In (b) two pulses are generated while in
(c), the delay is too small and no second pulse arises. Parameter
values as for Fig. 2(a) except I'=1.0. Input pulses are twin square
pulses of height 0.54, width 5 and varied delay between pulses. The
first pulse initiates at r=30.

strength is needed to induce firing) and absolute refractory
period (when only an extremely large stimulation will induce
firing), some definitions specify it as a period of time after
firing and others as a period of time after reaching threshold.
One universal notion about the refractory period is that it has
two major impacts on the neuron [21]. First it ensures that
propagation only proceeds in one direction at a time in the
axon. Our spatially homogeneous model does not address
this aspect. Second the refractory period provides an upper
limit on the frequency of a neuron’s response. We demon-
strate existence of the refractory period without choice of
specific definition by showing response time to two brief
current stimulus pulses as the time between pulses varies.
This verifies an upper limit to the frequency of firing. Cur-
rent stimuli which are too closely spaced fail to produce a
second AP. We emphasize that this refractory period is not
explicitly hard-coded into the model (as for integrate-and-fire
models [22]), but appears naturally as a result of differences
in the time scales of the activating and restoring processes
just as for biological neurons. As with biological neurons, the
refractory period of the JJ Neuron strongly depends on pa-
rameter values. For large delay between pulses, the firing
time of the second AP depends linearly on delay. When the
delay is sufficiently short, no second AP occurs. The slight
upturn in the curve for the second peak corresponds to inter-
ference between two closely spaced action potentials. Plots
on the right show time profiles of APs responding to two
brief current pulses. The top plot shows two response APs
while the bottom has only a single AP response. The maxi-
mal frequency of response can also be measured by present-
ing a dc input current (repeated pulse inputs with no delay)
and a frequency of 0.05 is found agreeing with the refractory
period of 20 shown in the figure.
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III. CONNECTING NEURONS

Synaptic models connect individual neuron models to
form a network. Synapses control communication, signal
transfers, and timing [26]. They can operate by means of
direct electrical connections (electrical “gap junction” syn-
apses) or chemical intermediates called neurotransmitters
(chemical synapse). Electrical synapses are modeled by di-
rect connection between JJ Neurons. We focus on chemical
synapses here as they are both more complex and more com-
mon. Chemical synapses can be excitatory or inhibitory,
moving the postsynaptic neuron closer to or farther from
threshold, respectively. In chemical synapses, an AP causes
the release of neurotransmitter molecules which diffuse
across the synaptic cleft, bind to receptors on the postsynap-
tic membrane, and induce input currents in the postsynaptic
neuron. The net effect on AP transmission across the synapse
is a delay in transmission and the spreading of the pulse. We
model the synaptic process using a resonant circuit attached
to the pulse junction, shown on the right hand side of Fig. 1.
The output is taken across the capacitor and sent through a
resistor to the input of a postsynaptic neuron. If the bias
current applied to the JJ neuron is positive (negative) with
respect to ground, then the synapse is excitatory (inhibitory).

The equations describing our synaptic circuit and the cou-
pling to the next neuron downstream come from Kirchhoff’s
laws and involve normalized parameters describing the reso-
nant frequency Qy=7/ \s“’Lsy,,CXy,,, quality factor Q
=R, Cyy,/ 7, synaptic coupling Ayy,=Lyy,/Lyyq, and re-
sistive coupling to the next neuron, ry,, normalized by R,.
We find that the voltage across the capacitor, v,,, (normal-
ized by I'[,R0,), and the current coupled to the next neuron,
i1, (normalized by Iy,) are given by

1 Q QQOAS\‘H . A

.. . Syn :
Q_évout"' Q_Ovout+vout=vp_ N lip— N I12, (6)

A(I=ALY. 7
Skn ‘an . 1z, _
N ip+ 1L2 12= Vous = Nyn(V 2 +0,0). - (7)

Here v, and v, represent the voltage across the pulse and
control junction of the next neuron, respectively.

In addition, the synapse circuit’s back-action on the JJ
Neuron circuit creates two additional terms on the right side
of Eq. (2): —ijp— AU,/ (Asynw(z,). For the simple demonstra-
tions of coupling behavior shown here, this back-action was
not strong enough to warrant buffer junctions, as is com-
monly needed with RSFQ circuits [27]. However, for more
complex circuits buffer junctions will most likely be needed.

We demonstrate synaptic behavior for inhibitory and ex-
citatory coupling in a two-neuron setting. The first neuron is
connected to the second via a synaptic connection as shown
in Fig. 1. The results are shown in Fig. 6 and 7.

In Fig. 6, we show excitatory coupling from neuron 1 to
neuron 2. Neuron 1 receives an external stimulus, and its
output drives neuron 2, which responds by firing at the same
rate but out of phase with neuron 1.

In Fig. 7, we show inhibitory coupling from neuron 1 to
neuron 2. Neuron 2 is configured to fire repetitively by in-
creasing its bias current. When neuron 1 is not firing, this
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FIG. 6. (Color online) Excitatory synaptic coupling. One JJ neu-
ron in blue (solid) drives another in black (dashed). The system is
initially quiet. At time #=20, a constant input current (red lower)
causes the first neuron to fire repetitively. Excitatory coupling in-
duces repetitive firing of the second neuron. Parameter values as for
Fig. 2(a) except i,=2.0, I'=2.0. Synaptic parameters are (=1.0,
0=0.05, A,,,=0.3, rj;=1.4. Input current to first neuron is a dc
current of i;,=0.3 initiated at #=20.

external stimulus causes neuron 2 to fire repeatedly. How-
ever, when neuron 1 is stimulated, it inhibits the firing of
neuron 2 even though neuron 2 continues to receive the ex-
ternal stimulus. Both return to their original state after the
stimulus to neuron 1 is removed. Qualitatively similar results
(Figs. 8 and 9) are obtained with two coupled Hodgkin-
Huxley neurons. The back-action of neuron 2 on neuron 1
causes small subthreshold oscillations and a slight decrease
in the firing rate of the first neuron (~10%). These minor
effects are not present in the Hodgkin-Huxley model because

0.6,

0.4f 1 1

0.2 1

Flux (arb. units)

L]
0 200 400 600 800 1000
Time (arb. units)

I

FIG. 7. (Color online) Inhibitory synaptic coupling. The second
neuron (upper dashed) is configured to fire repetitively. When the
first neuron (middle blue) is activated by an external input current
(lower red), it inhibits the second. Both return to their original state
after the external stimulus to the first neuron is removed. Parameter
values as for Fig. 6 except i,;=—1.9, i};=1.76, A;,=0.65, and N,
=0.35. This pushes the second neuron into a repetitive firing mode.
Synaptic parameters are also the same except r;,=0.6. Input current
to first neuron is a single square pulse of height 0.3, width 500, at
t=175. For illustrative purposes, the first neuron’s flux is shifted
down by —0.7 in the plot.
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FIG. 8. (Color online) Behavior of two Hodgkin-Huxley model
neurons coupled by a simple excitatory synapse model. The synapse
uses a positive “alpha” function [16] with maximum current 400 nA
and time scale 0.1 ms which is triggered at —30 mV on the down-
ward slope of the presynaptic neuron’s action potential. The presyn-
aptic neuron in blue (solid oscillating) is made to fire repetitively by
means of a constant current input (lower red curve) initiated at time
5 ms. Excitatory coupling then causes repetitive firing of the
postsynaptic neuron (dashed).

the alpha function synapse does not allow back-action. Add-
ing buffer junctions between the JJ neurons would be needed
to obtain precise agreement.

IV. DISCUSSION

We have shown that the JJ Neuron is a biologically real-
istic model for single neuron dynamics, and that individual
JJ Neurons can be coupled together in ways that are analo-
gous to inhibitory or excitatory chemical synaptic coupling.
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FIG. 9. (Color online) Behavior of two Hodgkin-Huxley neu-
rons coupled with an inhibitory synapse model using a negative
alpha function with maximum current 215 nA and time scale 1 ms.
The second neuron (dashed) has E; set to —15 mV to make it fire
repetitively in the absence of external inputs, while the first has E;
set at the standard —54.4 mV value to make it normally quiescent.
When the first neuron (middle blue) fires as the result of an external
input current (lower red), it inhibits the second. Both return to their
original state after the external stimulus to the first neuron is re-
moved. For illustrative purposes, the second neuron’s membrane
potential is shifted upwards by 110 mV in the plot.
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JOSEPHSON JUNCTION SIMULATION OF NEURONS

We envision that large-scale long term dynamics of networks
of neurons can be explored using JJ Neurons, contributing to
our understanding of behaviors such as synchronization, pat-
tern recognition, and memory formation. JJ Neurons should
be able to alleviate computational bottlenecks currently
slowing needed simulations. We now discuss the advantages
and limitations of this approach.

The advantages of large-scale JJ Neuron simulations are
speed, biological realism, simplicity of circuit design and
low power consumption. The major advantage is speed.
Based on similar circuits constructed for RSFQ circuits [8],
network simulations of 20 000 densely coupled neurons are
reasonable and could simulate one trillion APs for each of
these neurons in a few minutes. This speed is unachievable
with digital simulations using modern computers. Much of
this advantage is due to our analog rather than digital ap-
proach.

Analog simulations using electrical circuits to model neu-
rons [28-33] provide a framework more in line with the
parallel nature of biological neural networks. Silicon-based
very-large-scale-integrated (VLSI) circuits have been de-
signed which simulate simple integrate-and-fire neurons
[34,35], bursting neurons [36], and plastic synapses with tim-
ing and homeostasis [35,37]. The focus of VLSI research has
been on implementation of a learning processor rather than
simulation of long-term neuron dynamics so speed compari-
sons are difficult. Speeds of VLSI analog circuits are typi-
cally chosen to emulate biological neuron time scales (order
milliseconds). Presumably these circuit speeds could be in-
creased up to a few gigahertz. In contrast, RSFQ processors
similar to the JJ Neuron have been clocked on the order of
100 GHz [8]. In addition, the power dissipation for a JJ Neu-
ron network should be significantly less than a VLSI circuit
of the same size, allowing larger networks. Finally, the non-
linear behavior of Josephson junctions allows a JJ Neuron to
contain only two Josephson junctions, much smaller than the
22 transistors for a VLSI integrate-and-fire neuron [35].

The major limitation of JJ Neuron models compared to
digital simulations is measurement. While every neuron in a
computer simulation can be separately monitored, this is not
technically feasible in large networks of JJ Neurons. So for
settings which require detailed monitoring of each cell in the
network, the JJ Neuron is not appropriate. But many settings
do not require such detailed observation, instead measuring
averaged output or the output of a few key neurons. The
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measurable data from JJ Neuron experiments aligns more
closely with measurements of living tissue. Placing magnetic
field detectors on the chip allows measurement of averaged
activity levels, and subsequent comparison of simulation
data with electroencephalogram (EEG) measurements. Other
settings which involve output from only a few key neurons
are ripe for JJ Neuron models. Quantities such as voltage,
current or flux at important points in the network can be
measured directly, limited by the number of wires passing
through the cooling apparatus. In addition, a variety of col-
lective behaviors can be measured using already developed
RSFQ logic circuits such as clocks, counters, splitters, fol-
lowers, flip-flops, and transmission lines [7]. So, while JJ
Neuron simulations are not well suited to some questions,
they are for others, especially those involving averaged or
collective behaviors or producing output from a small frac-
tion of neurons. Analog simulations will not replace digital
simulations. Instead, they complement each other, with ana-
log simulations providing collective measurement on long
time scales and large networks, while digital simulations pro-
vide detailed measurements on shorter time scales and
smaller networks.

We are pursuing a number of potential enhancements to
our JJ Neuron circuit. Along with existing tunable circuit
parameters that affect the threshold, refractory period, fre-
quency, size and shape of APs, more flexibility is possible by
considering circuits with more junctions representing addi-
tional ion channels. To the extent that bursting and other
exotic neuron behavior is caused by relatively slow ion chan-
nels, adding a large capacitively shunted junction (with
smaller characteristic frequency) should allow JJ Neurons to
display these behaviors. Plasticity of synapses based on pre-
vious history may also be possible. Connection strength can
be dynamically adjusted with additional circuitry in the syn-
apse. If the adjustments are dependent on the firing history of
the neurons involved, a Hebbian learning process would be
possible.
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