

Northeast Forests, LLC
52,794 TONNES OF CARBON = 193,755 CO_{2} EQUIVALENT TONNES

Forest Carbon Inventory \& Projections 2018

TABLE OF CONTENTS

Mission 3
Units, Terms \& Ratios 4
Methods 5
Results 14
Annual Sequestration Estimates 19
Carbon Accounting for Forest Products 21
Attached Files 24
Literature Cited 25
Appendix A: Parcel and Management Unit Maps 26
Appendix B: Sample Plot Data Sheets 36
Acknowledgements 62
> "In January of 2009, Colgate became a signatory of the American College and University Presidents' Climate Commitment (ACUPCC), challenging Colgate to develop and implement actions to achieve climate neutrality by eliminating or offsetting 100 percent of the university's greenhouse gas emissions."
> -Colgate University's Sustainability and Climate Action Plan

MISSION

Colgate University is working toward the reduction and offsetting of its greenhouse gas emissions. The university's forest plays a significant role in this effort as a significant carbon sink. Colgate's Sustainability and Climate Action Plan calls for "the establishment of a baseline for forest carbon accounting" along with projections of "annual rates of forest carbon sequestration." This baseline was established in 2013. This report marks the first periodic re-measurement of forest carbon sequestration.

The establishment of a baseline for forest carbon accounting allows determination of the actual rates of forest carbon sequestration through the re-measurement of forest carbon in future years. Projections of annual rates of forest carbon sequestration allow interim assumptions about the contribution Colgate's forest makes toward climate neutrality efforts. The rates of sequestration determined in future re-measurements quantify the actual role the forest plays in the university's carbon budget at 5 -year intervals.

This report details the procedures, results and projections from the baseline measurements of Colgate's forest carbon and 2018 re-measurements and revisions. The methods, data, calculations and technical publications included within this report are intended to allow the reader to duplicate the results. These contents also serve as a guide for the re-measurement of Colgate's forest carbon at five year intervals.

This mission statement is followed by sections on units and ratios, a detailed explanation of the methods used, a presentation of the results, estimates of annual forest tree carbon sequestration and a accounting for carbon sequestration in harvested wood products.

UNITS, TERMS \& RATIOS

Readers may find the following definitions of units, terms and ratios helpful in reading and understanding this report.

- DBH = diameter at breast height; breast height is defined as 4.5' above the ground
- Ton $=$ short ton $=2,000 \mathrm{lbs}=907.185$ kilograms
- Tonne $=$ metric ton $=1,000$ kilograms $=2,240 \mathrm{lbs}$.
- 1 ton $=0.907185$ tonnes
- 1 tonne $=1.1023$ tons

The dry weight of wood is its biomass weight; $1 / 2$ of the weight of biomass is carbon

- Atomic weight of carbon $=12$ atomic mass units
- Atomic weight of carbon dioxide $=44$ atomic mass units
- 1 tonne of carbon $=44$ atomic mass units/ 12 atomic mass units $=3.67$ tonnes of carbon dioxide
- 1 tonne of tree carbon $=3.67 \mathrm{CO} 2$ equivalent tonnes
- 1 acre $=0.404686$ hectares
- 1 hectare $=2.47105$ acres

METHODS

The procedures outlined in USFS GTR NRS-18 Measurement Guidelines for the Sequestration of Forest Carbon served as a general guide for the baselines measurements of the tree carbon in Colgate's forests. A copy of this document is attached to the electronic version of this report.

Colgate University's 2013 Tree Farm Stewardship Plan was used in compiling a list of properties and areas to include in the original baseline measurements. All of the properties are in Madison County and within a 7-mile radius of the campus, with the exception of the more distant Upper Saranac parcel (Franklin County). A location map of the forest parcels is shown in Figure 1 on page 6.

The maps, management unit delineations and acreages in the initial plan were sufficient for planning purposes. Subsequent field work resulted in more accurate mapping and updated management unit designations. The forested acreage of each Colgate parcel is as follows:

PARCEL
FOREST ACREAGE
Campus 336.5
Hamilton Street (north \& south) 199.8
Beattie Reserve 130.8
Bonney Hill 61.3
Parker Farm 73.1
Bewkes Center 116.2
Johnnycake Hill 12.0
Turkey Hill 116.4
Upper Saranac 11.4
Total Forest Acreage
1,057.5

FIGURE 1. COLGATE UNIVERSITY FOREST LOCATION MAP

Sixty management units spread across nine separate parcels are included in the baseline measurements. The total acreage encompassed by the 2013 baseline measurements was $1,058.7$. Development on campus caused the loss of 1.2 acres of forest. The total acreage encompassed by the updated 2018 baseline measurements is 1,057.5. Maps of each of these properties are included in Appendix A. These management units include naturally occurring hardwood forest types in all three successional stages, along with softwood plantations and two recent hardwood plantations.

The first step in establishing baseline measurements was to estimate the number of sample plots necessary for a reliable estimate. GTR-NRS 18 suggests targeting a result that is within 10% of the true mean at the 95-percent confidence level. The Winrock Sampling Calculator spreadsheet (a copy is attached to the electronic version of this report) was used in making this preliminary calculation of the number of sample points.

Mean and standard deviations of tree carbon stocking for comparable forest land were obtained from USFS FIA data and other sources as a proxy for existing stocking levels in making these calculations. Initial calculations called for 47 1/10-acre sample plots. Sensitivity analysis to both the standard deviation and the acceptable level of error, along with the desire to make sure all of the 60 management units on the 9 parcels were sampled, resulted in targeting 147 sample plots. Field inspections, the addition of more acreage and updated mapping increased the final number of sample plots to 174 . One of the original sample plots from 2013 was lost to development, bringing the total used in 2018 down to 173. A breakdown of the number of sample plots by parcel and management unit is shown in Table 1 on page 9.

Plot locations were established using systematic spacing within individual management units. Preliminary plot location coordinates were entered in a hand-held GPS unit. Actual locations of the ground varied with site conditions and mapping updates (e.g. a planned plot center did not fall within the target stand, based on the original mapping). When a plot center location was located, a blue plastic stake was placed in the ground as a permanent marker and the plot center coordinates were recorded with a GPS unit. The waypoint number (corresponding to the coordinates) for each plot was recorded on the data sheet for that plot. A KML file showing the location of all 173 plots is included as attachment to the electronic version of this report and can be opened using Google Earth software. A SHP file of plot locations is included as well.

Sample plots are 1/10 acre in size. Circular plots with a radius of 37.2 feet are used. All live trees and shrubs 3.0 inches in diameter at breast height (DBH) and larger were measured. In each case, the DBH (to $1 / 10$ of an inch) and species of the tree or shrub was recorded. A diagram of $1 / 10$ acre sample plot is shown in Figure 2 on page 10.

In making the 2018 re-measurements of sample plots, only 111 of the original 174 plots could be located. Plot center stakes had been removed from 62 plots and one other was lost to development (as noted earlier). GPS coordinate data was sufficient to re-establish sample plots in locations close to the original, but not closely enough to be in the exact locations. As a result, re-measurement data from 111 sample plots are available for use in estimating the amount of carbon sequestered in trees over the past five years.

The 173 sample plots measured in 2018 are used in calculating a new baseline that will be used for making future estimates at five-year intervals. In addition to blue plot center stakes, three witness trees were painted at each plot. These trees have painted circles facing the plot center. If any plot center marker stakes are removed in the future, they can be accurately replaced using the witness trees as a reference. Paint on these witness trees will be refreshed each time a new set of measurement is made.

TABLE 1. DISTRIBUTION OF FOREST CARBON RE-MEASUREMENT PLOTS BY PARCEL AND MANAGEMENT UNIT FOR THE COLGATE UNIVERSITY FOREST

PARCEL	MGT UNIT	ACRES	\# OF PLOTS	PARCEL	MGT UNIT	ACRES	\# OF PLOTS
Campus	1	11.6	3	Beattie	22	14.4	3
Campus	2	13.5	3	Beattie	24	63.9	11
Campus	3	.		Beattie	25	20.6	2
Campus	4	10.7	1	Beattie	26	11.3	2
Campus	5	25.5	4	Beattie	27	14.3	3
Campus	5 a	12.6	2	Beattie	28	6.3	1
Campus	6	34.0	5	Bonney Hill	BH1	41.3	6
Campus	7	6.9	2	Bonney Hil	BH2	9.0	2
Campus	8	4.0	1	Bonney Hil	BH3	6.0	1
Campus	9	14.7	2	Bonney Hil	BH4	5.0	1
Campus	10	42.0	4	Parker Farm	PF1	5.0	1
Campus	11	9.3	2	Parker Farm	PF2	39.8	5
Campus	13	112.3	11	Parker Farm	PF3	6.2	2
Campus	D	2.0	1	Parker Farm	PF4	9.3	1
Campus	E	9.5	2	Parker Farm	PF5	12.8	2
Campus	F	20.0	6	Bewkes	BK1	13.4	3
Campus	K	3.9	1	Bewkes	BK3	16.4	2
Hamilton St.	14	4.5	1	Bewkes	BK4	13.5	3
Hamilton St.	15	5.3	1	Bewkes	BK5	23.0	5
Hamilton St.	16	3.2	1	Bewkes	BK6	1.2	1
Hamilton St.	17	6.4	1	Bewkes	BK7	48.7	9
Hamilton St.	18	7.6	1	Johnnycake Hill	JC1	12.0	2
Hamilton St.	19	44.2	5	Turkey Hill	TH1	31.0	4
Hamilton St.	19a	6.0	1	Turkey Hill	TH2	20.0	3
Hamilton St.	20	2.7	1	Turkey Hill	TH3	8.0	1
Hamilton St.	21 N	46.5	9	Turkey Hill	TH4	23.4	4
Hamilton St.	P	3.8	1	Turkey Hill	TH5	13.0	2
Hamilton St.	21S	40.0	6	Turkey Hill	TH6	11.0	2
Hamilton St.	23	22.5	4	Turkey Hill	TH7	10.0	2
Hamilton St.	N	7.1	2	Upper Saranac	US1	11.4	2
					TOTAL	1057.5	173

FIGURE 2. DIAGRAM OF A 1/10 ACRE FOREST TREE CARBON SAMPLING PLOT

A Ny-Rod type pole was used as an aid in measuring the plot radius. This pole has a brightly colored marking $13.5^{\prime \prime}$ wide at breast height. A diameter $13.5^{\prime \prime}$ has a limiting distance of 37.2^{\prime} for a basal area factor (BAF) of 10 (meaning each tree in the sample represents 10 square feet of basal area). This allows a person measuring trees to determine whether a tree is within the radius of the plot by looking back at the colored marking on the pole with a BAF 10 angle gauge. The distance of borderline trees from the plot center was measured to determine if they fell within the plot radius.

A separate tally sheet was created for each sample plot. Each tally sheet contains the parcel name, date and waypoint number. Individual measurements of each stem were recorded (DBH, species). A list of species codes and all 173 tally sheets are included in Appendix B to this report.

The permanent markers, witness tree markings and GPS coordinates of these sample points will allow remeasurement at the same locations every five years, as recommended in GTR-NRS 18. Re-measurement allows calculation of the amount of carbon sequestered in trees, as the difference between the re-measurement totals and the baseline measurements.

Calculation of the total tree carbon (TTC) represented by the sample took several steps. Plot data was grouped by management unit. This allowed calculation of the amount of tree carbon in the sample for each unit, followed by an estimate of tree carbon for the total unit.

Calculations are based on the commonly accepted biomass equation and parameters for total above ground biomass established by Jenkins, et al (2003), excerpted below:

Table 4. Parameters and equations* for estimating total aboveground biomass for all hardwood and softwood species in the United States.

	Species group	Parameters		$\begin{gathered} \text { Data } \\ \text { points } \end{gathered}$	$\begin{gathered} \text { Max"dbh } \\ \mathrm{cm} \end{gathered}$	RMSE ${ }^{\text { }}$ \log units	R^{2}
		B.	β				
Hardwood	Aspen/alder/cottonwood/willow	-2.2094	2.3867	230	70	0.507441	0.953
	Soft maple/birch	-1.9123	2.3651	316	66	0.491685	0.958
	Mixed hardwood	-2.4800	2.4835	289	56	0.360458	0.980
	Hard maple/oak/hickory/beech	-2.0127	2.4342	485	73	0.236483	0.988
Softwood	Cedar/larch	-2.0336	2.2592	196	250	0.294574	0.981
	Douglas-fir	-2.2304	2.4435	165	210	0.218712	0.992
	True fir/hemlock	-2.5384	2.4814	395	230	0.182329	0.992
	Pine	-2.5356	2.4349	331	180	0.253781	0.987
	Spruce	-2.0773	2.3323	212	250	0.250424	0.988
Woodland ${ }^{1}$	Juniper/oak/mesquite	-0.7152	1.7029	61	78	0.384331	0.938

* Biomass equation:
$b m=\operatorname{Exp}\left(\beta_{0}+\beta_{1} \ln d b h\right)$
where
$\mathrm{bm}=$ total aboveground biomass (kg) for trees 2.5 cm dbh and larger
$d b h=$ diameter at breast height (cm)
Exp $=$ exponential function

$$
\text { In }=\text { natural } \log \text { base "e" (2.718282) }
$$

${ }^{1}$ Number of data points generated from published equations (generally at 5 cm dbh intervals) for parameter estimation.
" Maximum dbh of trees measured in published equations.
1 Root mean squared error or estimate of the standard deviation of the regression error term in natural log units.
I Woodland group includes both hardwood and softwood species from dryland forests.

FIGURE 3. SCREENSHOT OF THE FOREST AND TREE CARBON EXCEL SPREADSHEET

This formula and parameters were used in creating a Forest and Tree Carbon Spreadsheet. An individual worksheet was created for each management unit, with a file provided for each of the nine distinct parcels involved (individual spreadsheets for each parcel are attached in the electronic version of this report). Each worksheet allows individual plot data (species \& DBH for each stem) to be entered for each management unit. A screen shot of this spreadsheet is shown in Figure 3 above.

In addition to species and DBH, the user must provide the number of the species group appropriate for each entry. Species groups were referenced from Jenkins, et al (2003).

The spreadsheet converts DBH from inches to centimeters for use in the formula. The species group entry determines which set of parameters is applied. Above ground biomass is calculated in kilograms. Below ground biomass is estimated and then added to above ground biomass. Total tree biomass is converted to carbon (using a factor of 0.5) and expressed in both metric and short tons.

Carbon from all of the trees in the individual management unit's sample are summed. These totals are then multiplied by the inverse of sampling intensity ($1 \div$ [\# of plots $\times 0.1$ acres \div management unit size in acre]) to arrive at an estimate of total tree carbon in the management unit. Individual management unit totals are summed to arrive at the total estimate of tree carbon in university's forests.

RESULTS

The 2018 baseline estimate of total tree carbon in the Colgate University Forest is 52,794 tonnes. Average stocking is 49.9 tonnes/acre (123.3 tonnes/hectare). While some recently established hardwood plantations have no measurable amount of tree carbon, two small management units with mature forest communities had 123 to 196 tonnes/acre. Disregarding these outliers results in a negligible change to the average stocking (50.1 tonnes/acre). A summary of the total tree carbon for individual management units is shown in Table 2 on page 15. Tree carbon stocking levels (tonnes/acre) are shown in Table 3 on page 16.

Each tonne of tree carbon is the equivalent of 3.67 tonnes of carbon dioxide. Applying this conversion factor, the 2018 baseline estimate of carbon dioxide sequestered in the Colgate University Forest is 193,755 tonnes. A summary of the carbon dioxide equivalents sequestered in each management units is shown in Table 4 on page 17. Stocking levels (tonnes/acre) of carbon dioxide equivalents for each of the management units are shown in Table 5 on page 18.

These 2018 baselines estimate of tree carbon and carbon dioxide equivalents establish the new basis for carbon accounting on the university's forest. Re-measurement in five years will provide new totals. The difference between the new totals and the baseline measurements is the amount of carbon sequestered over that period. This sequestered carbon (and carbon dioxide equivalents) can be annualized (by dividing by five) and used in Colgate's overall carbon accounting.

The conditions observed during the baseline inventory of Colgate's forest provide the basis for projections about the amount of carbon likely to be sequestered in trees over the next five years. These projections may be used as a proxy for the forest's contribution to Colgate's carbon budget until the re-measurement allows actual calculations. The carbon budget can then be reconciled to account for any difference between the projections and actual sequestration. The following section details the process for projecting annual sequestration.

TABLE 2. SUMMARY OF TOTAL TREE CARBON ESTIMATES BY MANAGEMENT UNIT FOR THE COLGATE UNIVERSITY FOREST

PARCEL	MGT UNIT	TOTAL TREE CARBON (TONNES)	PARCEL	MGT UNIT	TOTAL TREE CARBON (TONNES)
Campus	1	400.6	Beattie	22	1,071.5
Campus	2	748.9	Beattie	24	1,759.5
Campus	3	242.1	Beattie	25	391.0
Campus	4	674.6	Beattie	26	375.5
Campus	5	1,343.0	Beattie	27	1,002.1
Campus	5 a	546.2	Beattie	28	148.0
Campus	6	1,936.7	Bonney Hill	BH1	2,678.5
Campus	7	611.9	Bonney Hill	BH2	376.8
Campus	8	206.8	Bonney Hill	BH3	372.9
Campus	9	853.9	Bonney Hill	BH4	137.3
Campus	10	2,212.5	Parker Farm	PF1	540.6
Campus	11	684.2	Parker Farm	PF2	2,126.8
Campus	13	4,319.5	Parker Farm	PF3	265.9
Campus	D	164.6	Parker Farm	PF4	257.2
Campus	E	649.2	Parker Farm	PF5	42.5
Campus	F	461.1	Bewkes	BK1	818.8
Campus	K	-	Bewkes	BK3	1,263.8
Hamilton St.	14	230.1	Bewkes	BK4	449.6
Hamilton St.	15	125.4	Bewkes	BK5	1,973.7
Hamilton St.	16	168.0	Bewkes	BK6	235.3
Hamilton St.	17	517.0	Bewkes	BK7	1,176.4
Hamilton St.	18	461.9	Johnnycake Hill	JC1	428.8
Hamilton St.	19	1,333.3	Turkey Hill	TH1	2,047.3
Hamilton St.	19a	236.7	Turkey Hill	TH2	1,515.9
Hamilton St.	20	331.2	Turkey Hill	TH3	181.7
Hamilton St.	21 N	3,427.8	Turkey Hill	TH4	797.7
Hamilton St.	P	288.1	Turkey Hill	TH5	1,078.3
Hamilton St.	21S	3,575.2	Turkey Hill	TH6	434.1
Hamilton St.	23	898.7	Turkey Hill	TH7	610.5
Hamilton St.	N	-	Upper Saranac	US1	587.1
				TOTAL	52,794.3

TABLE 3. TOTAL TREE CARBON ESTIMATES PER ACRE AND PER HECTARE FOR INDIVIDUAL MANAGEMENT UNITS IN THE COLGATE UNIVERSITY FOREST

PARCEL	MGT UNIT	CTONNES PER ACRE	CTONNES PER HA	PARCEL	MGT UNIT	CTONNES PER ACRE	CTONNES PER HA
Campus	1	34.5	85.3	Beattie	22	74.4	183.7
Campus	2	55.5	137.0	Beattie	24	27.5	68.0
Campus	3	60.5	149.4	Beattie	25	19.0	46.9
Campus	4	63.0	155.7	Beattie	26	33.2	82.0
Campus	5	52.7	130.0	Beattie	27	70.1	173.0
Campus	5 a	43.3	107.0	Beattie	28	23.5	58.0
Campus	6	57.0	140.6	Bonney Hill	BH1	64.9	160.1
Campus	7	88.7	219.0	Bonney Hill	BH2	41.9	103.4
Campus	8	51.7	127.7	Bonney Hill	BH3	62.2	153.5
Campus	9	58.1	143.4	Bonney Hill	BH4	27.5	67.8
Campus	10	52.7	130.1	Parker Farm	PF1	108.1	267.0
Campus	11	73.6	181.7	Parker Farm	PF2	53.4	131.9
Campus	13	38.5	95.0	Parker Farm	PF3	42.9	105.9
Campus	D	82.3	203.2	Parker Farm	PF4	27.7	68.3
Campus	E	68.3	168.7	Parker Farm	PF5	3.3	8.2
Campus	F	23.1	56.9	Bewkes	BK1	61.1	150.9
Campus	K	-	-	Bewkes	BK3	77.1	190.3
Hamilton St.	14	51.1	126.3	Bewkes	BK4	33.3	82.2
Hamilton St.	15	23.7	58.4	Bewkes	BK5	85.8	211.9
Hamilton St.	16	52.5	129.6	Bewkes	BK6	196.1	484.2
Hamilton St.	17	80.8	199.5	Bewkes	BK7	24.2	59.6
Hamilton St.	18	60.8	150.1	Johnnycake Hill	JC1	35.7	88.2
Hamilton St.	19	30.2	74.5	Turkey Hill	TH1	66.0	163.1
Hamilton St.	19a	39.5	97.4	Turkey Hill	TH2	75.8	187.1
Hamilton St.	20	122.7	302.9	Turkey Hill	TH3	22.7	56.1
Hamilton St.	21 N	73.7	182.0	Turkey Hill	TH4	34.1	84.2
Hamilton St.	P	75.8	187.2	Turkey Hill	TH5	82.9	204.8
Hamilton St.	21S	89.4	220.7	Turkey Hill	TH6	39.5	97.4
Hamilton St.	23	39.9	98.6	Turkey Hill	TH7	61.1	150.7
Hamilton St.	N	-	-	Upper Saranac	US1	51.5	127.2

TABLE 5. TOTAL TREE CARBON DIOXIDEESTIMATES PER ACRE AND PER HECTARE FOR INDIVIDUAL MANAGEMENT UNITS IN THE COLGATE UNIVERSITY FOREST

PARCEL	MGT UNITCO2 TONNES CO2 TONNES			PARCEL	MGT UNIT	CO2 TONNES	CO2 TONNES
		PER ACRE	PER HA			PER ACRE	PER HA
Campus	1	126.7	312.9	Beattie	22	273.1	674.3
Campus	2	203.6	502.7	Beattie	24	101.1	249.5
Campus	3	222.1	548.5	Beattie	25	69.7	172.0
Campus	4	231.4	571.3	Beattie	26	122.0	301.1
Campus	5	193.3	477.3	Beattie	27	257.2	635.0
Campus	5a	159.1	392.8	Beattie	28	86.2	212.9
Campus	6	209.0	516.2	Bonney Hill	BH1	238.0	587.7
Campus	7	325.5	803.6	Bonney Hill	BH2	153.7	379.4
Campus	8	189.7	468.5	Bonney Hill	BH3	228.1	563.2
Campus	9	213.2	526.4	Bonney Hill	BH4	100.8	248.8
Campus	10	193.3	477.4	Parker Farm	PF1	396.8	979.8
Campus	11	270.0	666.7	Parker Farm	PF2	196.1	484.2
Campus	13	141.2	348.5	Parker Farm	PF3	157.4	388.6
Campus	D	302.0	745.8	Parker Farm	PF4	101.5	250.6
Campus	E	250.8	619.2	Parker Farm	PF5	12.2	30.1
Campus	F	84.6	208.9	Bewkes	BK1	224.3	553.7
Campus	K	-	-	Bewkes	BK3	282.8	698.3
Hamilton St.	14	187.7	463.4	Bewkes	BK4	122.2	301.8
Hamilton St.	15	86.8	214.4	Bewkes	BK5	314.9	777.6
Hamilton St.	16	192.7	475.7	Bewkes	BK6	719.6	1776.9
Hamilton St.	17	296.5	732.0	Bewkes	BK7	88.7	218.9
Hamilton St.	18	223.0	550.7	Johnnycake Hill	JC1	131.1	323.8
Hamilton St.	19	110.7	273.3	Turkey Hill	TH1	242.4	598.5
Hamilton St.	19a	144.8	357.5	Turkey Hill	TH2	278.2	686.8
Hamilton St.	20	450.2	1111.6	Turkey Hill	TH3	83.4	205.8
Hamilton St.	21 N	270.5	668.0	Turkey Hill	TH4	125.1	308.9
Hamilton St.	P	278.2	687.0	Turkey Hill	TH5	304.4	751.6
Hamilton St.	21S	328.0	809.9	Turkey Hill	TH6	144.8	357.6
Hamilton St.	23	146.6	361.9	Turkey Hill	TH7	224.1	553.2
Hamilton St.	N	,	- \|	Upper Saranac	US1	189.0	466.7

ANNUAL SEQUESTRATION ESTIMATES

An estimate of carbon sequestered in trees in Colgate's forest over the past five years can be made from the 111 sample plots from 2013 that were re-measured in 2018. The trees in these sample points had approximately 561.4 tonnes of carbon in 2013 and 615.4 tonnes of carbon in 2018. The differences in these totals (54 tonnes of carbon) is the net growth that occurred over the past five years. Multiplying this sample estimate by the inverse sampling intensity ($1 \div(11.1$ acres $\div 1,057.5$ acres $)$) results in a carbon sequestration estimate in trees in the Colgate forest of 5,145 tonnes over the past five years.

Multiplying the tree carbon sequestration (5,145 tonnes) by 3.67 results in a carbon dioxide sequestration estimate of 18,882 tonnes over the past five years. Dividing this total by 5 results in an estimate of annual carbon dioxide sequestration in trees of 3,776.4 tonnes.

A second estimate of carbon sequestration was made from 90 of the re-measured plots, employing a plot selection that is as spatially representative of each of the nine parcels as possible. The original sample measurements in 2013 were stratified to allow individualmanagement unit estimates. Vandalism and removal of 63 plot stakes makes this stratification obsolete and prevents management unit level estimates. The estimate made from re-measurements of 111 plots weights each plot equally. Note that neither of the original plots on the Johnnycake Hill parcel were still intact, so a plot with a similar timber type (larch plantation) was used as a proxy.

The trees in 90 sample plots used in the second estimate had approximately 434.2 tonnes of carbon in 2013 and 478.1 tonnes of carbon in 2018. The differences in these totals (43.9 tonnes of carbon) is the net growth that occurred over the past five years. Multiplying this sample estimate by the inverse sampling intensity ($1 \div$ (9 acres $\div 1,057.5$ acres)) results in a carbon sequestration estimate in trees in the Colgate forest of 5,157 tonnes over the past five years.

Multiplying the tree carbon sequestration in the second estimate (5,157 tonnes) by 3.67 results in a carbon dioxide sequestration estimate of 18,926 tonnes over the past five years. Dividing this total by 5 results in an estimate of annual carbon dioxide sequestration in trees of 3,785.3 tonnes.

The carbon sequestration estimate from the 90 -plot sample is just slightly more (0.2%) than the estimate from the 111 -plot sample. With virtually no difference between the two, the estimate from the larger sample ($3,776.4$ tonnes of carbon dioxide equivalents) should used in Colgate's carbon accounting for the 5-year period between 2013 and 2018. An annual carbon dioxide equivalents sequestration rate of 3,776.4 tonnes should be used for each of the previous five years.

CARBON ACCOUNTING FOR FOREST PRODUCTS

The Colgate University Forest is managed on a sustainable basis, in accordance with a stewardship plan approved by the Open Lands and Forest Stewardship Oversight Committee. The forest is managed for a wide range of benefits, with teaching, research, and outdoor recreation being foremost. Timber production is one of the complimentary uses of the forest and periodic timber harvests take place. When these timber harvests take place, the products that result sequester carbon for varying lengths of time. It is important to accurately account for this as part of the university's carbon budget.

Two timber harvests took place in the five- year interval between the initial forest carbon estimates in 2013 and the re-measurements in 2018. A salvage harvest was on done in Stand 24 on the Beattie parcel to remove dead and slow growing white spruce stems and facilitate regeneration of native hardwood species. A shelterwood harvest was done in Stand JC1 on the Johnnycake Hill parcel to remove mature larch from this plantation and facilitate regeneration of native hardwood species. These harvests took place in Winter and Spring, 2014, respectively.

The following timber volumes were harvested:

		chips softwood logs	hardwood logs	
unit	date	$\underline{\text { (tons) }}$	$\underline{(M B F)}$	$\underline{(M B F)}$
Beattie 24	Winter 2014	1,955	6.900	
Johnnycake Hill JC1	Spring 2014	824	40.036	0.277
* MBF = thousand board feet				

Carbon accounting for these harvest products begins in the year 2014. The combined 2,779 tons of wood chips that were harvested were sold to a wood burning electrical plant (ReEnergy, Lyonsdale, NY). Using wood as a fuel source in this production of energy is an indirect substitute of atmospheric carbon for fuel from fossilbased carbon. In 2018 the US Environmental Protection Agency (EPA) declared that forest biomass used for energy production is carbon neutral, provided that this energy production does not cause conversion of forests to non-forest uses (EPA, 2018). Based on this, it appears that Colgate University does not have to include emissions from the use of these harvested wood chips in its carbon accounting.

The remaining forest products volumes from these two timber harvests include softwood and hardwood logs. The timber harvest volumes shown earlier were entered in the USDA Forest Service's i-Tree Harvest Carbon Calculator to determine a schedule for accounting for carbon emissions. Stand level reports for both timber harvests are included as attachments in the electronic version of this document. The information provided in these reports was used in calculating periodic emissions volumes for use in Colgate's carbon accounting. A combined emissions schedule for both harvests is shown in Table 6.

Notes on Forest Lost to Development

As noted earlier in the report, 1.2 acres of Colgate University's forestland was lost to development in 2017. This occured in 2017. This activity was a land use change and not part of the management of open space lands. An attempt was made to accurately account for the carbon in the forest products in the trees that were removed, but the project manager was uncooperative.

A complete tally was made of all trees identified for removal in the development project. These trees contained approximately 27.2 tonnes of carbon, equivalent to 99.8 tonnes of carbon dioxide. These trees were accounted for in Colgate University's 2017 carbon budget.

TABLE 6.FOREST CARBON ACCOUNTING CHEDULE FOR 2014 TIMBER HARVESTS ON THE COLGATE UNIVERSITY FOREST

	Year	Products $\left(\mathrm{CO}_{2}\right)$ (tonnes)	Landfill $\left(\mathrm{CO}_{2}\right)$ (tonnes)	Stored $\left(\mathrm{CO}_{2}\right)$ (tonnes)	Energy $\left(\mathrm{CO}_{2}\right)$ (tonnes)	Emissions $\left(\mathrm{CO}_{2}\right)$ (tonnes)
	0	45.4	0.0	45.4	18.8	14.3
	10	29.1	8.8	37.8	22.6	18.2
	20	21.5	12.5	34.0	24.4	20.2
	30	17.1	14.4	31.5	25.5	21.6
	40	14.2	15.5	29.8	26.1	22.7
	50	12.1	16.3	28.4	26.6	23.5
	60	10.5	16.9	27.4	26.9	24.3
	70	9.2	17.4	26.6	27.2	24.9
	80	8.2	17.8	25.9	27.2	25.4
	90	7.3	18.1	25.5	27.3	25.9
	100	6.5	18.4	25.0	27.3	26.3
	Averag	15.4	14.7	30.2	25.7	22.7

FILE ATTACHMENTS

Clicking on the paperclip button in the upper left hand corner reveals the attached files in the lower section of the window．Files can be opened，viewed，edited and saved in new locations．

（7）	Attachments		（1）	
\cdots	8 \times－	B Open \＆Save	6 Add	（1）Delete 6 Search
	Name	Modified	Size	Compressed size
0	2013 Colgate Forest Carbon Measurement Plot Locations．kml	6／18／2013 9：23：55 AM	122 KB	7 KB
\otimes		8／7／2018 2：04：21 PM	123 KB	112 KB
	吹 Beattie 24 －i－Tree Harvest Carbon Calculator report．pdf TColgate 2018 re－measurement plot coordinates－shp file．zip	8／14／2018 11：11：34 AM	7 KB	6 KB
L8	－Colgate Forest 2018 re－measurement plot coordinates．kml吗．Johnnycake Hill－i－Tree Harvest Carbon Calculator report．pdf	8／14／2018 11：04：48 AM	117 KB	5 KB
		8／7／2018 2：01：42 PM	123 KB	112 KB
景	＂Measurement Guidelines for the Sequestration of Forest Carbon．pdf Methods for Calculating Forest Carbon with Standard Tables．pdf	1／9／2013 3：14：45 PM	618 KB	574 KB
		6／15／2013 12：32：46 PM	1，573 KB	1，435 KB
0	吹 National－Scale Biomass Estimators for United State Tree Species．pdf听 Rev3－Forest Carbon Inventory Cover－DRAFT．pdf WiWinrock Sampling Calculator Spreadsheet．xls	4／22／2013 1：32：54 PM	207 KB	182 KB
		6／25／2013 3：56：37 PM	168 KB	142 KB
		6／20／2013 9：00：14 AM	251 KB	121 KB

LITERATURE CITED

Birdsey, Richard A. 1992. Carbon storage and accumulation in United States forest ecosystems. Gen. Tech. Rep. WO-59. Washington D.C.: U.S. Department of Agriculture, Forest Service, Washington Office. 51p.

Carbon Online Estimator. 2013. COLE 1605(b) Report for New York. Durham, NH: U.S. Department of Agriculture, Forest Service. 73 p.

Colgate University. 2011. Sustainability and climate action plan. Hamilton, NY: Colgate University. 86 p.

Jenkins, Jennifer C.; Chojnacky, David C.; Heath, Linda S.; Birdsey, Richard A. 2003. National scale biomass estimators for United States tree species. Forest Science. 49: 12-35.

Pearson, Timothy R.H.; Brown, Sandra L.; Birdsey, Richard A. 2007. Measurement guidelines for the sequestration of forest carbon. Gen. Tech. Rep. NRS-18. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 42 p.

Smith, James E.; Heath, Linda S.; Skog, Kenneth E.; Birdsey, Richard A. 2006. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 216 p.

APPENDIX A: PARCEL AND MANAGEMENT UNIT MAPS

CAMPUS PARCEL

汬

 APPENDIX B: SAMPLE PLOT DATA SHEETS

SPECIES CODES

COMMON NAME	CODE	COMMON NAME	CODE	COMMON NAME	CODE
commercial softwood (Other) commercial hardwood (Other) fir sp. balsam fir Atlantic white cedar eastern redcedar larch (introduced) tamarack (native) spruce Norway spruce white spruce black spruce red spruce jack pine spruce pine longleaf pine red pine eastern white pine Scotch pine Douglas-fir northern white cedar eastern hemlock boxelder black maple	OSW OHW FIR BF AWC ERC L TAM S NS WS BS RS JP SSP LLP REP EWP SCP DF NWC EH BXM BM	striped maple red maple silver maple sugar maple mountain maple serviceberry yellow birch sweet birch paper birch gray birch American hornbeam/musclewood bitternut hickory pignut hickory shagbark hickory American chestnut American beech white ash black ash green ash honeylocust American holly butternut black walnut yellow poplar	STM RM SVM SM MM SVB YB SB PB GB AHB BH PH SGH ACN AB WA BA GA HL HOL BUT BW YP	cucumbertree red mulberry eastern hophornbeam sycamore balsam poplar eastern cottonwood bigtooth aspen quaking aspen pin cherry black cherry chokecherry white oak swamp white oak northern pin oak chestnut oak northern red oak black oak black locust black willow American mountain ash American basswood American elm rock elm	CUC MUL OST AS BP EC BTA QA PNC BC CC WO SWO NPO CO NRO BO BL BWL AMA BAS AEL REL

Oovatem

Gale gate

Oovatem

Oovatem

.

Forest Carbon Inventory \& Projections 2018

Steven Bick, PhD, ACF CF
 Northeast Forest, LLC
 Thendara, NY 13472 www.northeastforest.com

Colgate
 UNIVERSITY

Colgate University 13 Oak Drive
Hamilton, NY, 13346
www.colgate.edu

ACKNOWLEDGEMENTS

John Pumilio is responsible for ensuring that Colgate's forest is properly recognized within the university's Sustainability and Climate Action Plan. Mike Jasper facilitated this project. Colgate's Open Lands and Forest Stewardship Oversight Committee was very supportive of getting this baseline set of measurements completed. The advice of Forest Service Ecologist Coeli Hoover was invaluable in all matters concerning forest carbon. David Bush, LS contributed timely assistance with maps. Mike Black measured large numbers of trees in all sorts of weather, with the occasional assistance of Carol Rodriguez . Mandy-Scott Bachelier's graphic design talent is behind the layout of this report.

