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ABSTRACT

We present modelings of high-order line singularities encoded in space-variant polarization of light. This involves
calculating the line patterns produced by the superposition of light beams in orthogonal states of circular polar-
ization, with each beam carrying an optical vortex, and where one of them is asymmetric. This setting allowed
us to study the case of monstars of high order. We find that monstars can have positive or negative singularity
indices, modifying the previous understanding of the pattern, which was based on the case of lowest-order C-
points. Monstars then remain characterized only by their own unique feature: sectors with patterns of mostly
curved lines that radiate from the center. Given this definition, we propose that the case where the index is +1
be classified as a monstar. We also found that the asymmetric modes contain kinks that appear in the C-lines
of a distinct but related pattern that contains line orientation discontinuities.
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1. INTRODUCTION

Polarization singularities have become increasingly important in light of newly developed methods to produce
designer beams carrying space-variant polarization. Such beams can be produced either by superposition of op-
tical beams;' 7 or by passage through g-plates,® ? optical elements with stress birefringence,'® optical fibers,' 12
or subwavelength gratings.'® These methods allow a greater exploration of disclinations, which are ubiquitous in
nature, as well as providing a setting for applications. In the case of light, orientation polarization singularities
come in the form of C-points,'* and which are classified as lemons, stars and monstars.'® 7 Not until recently
have monstars, a purely asymmetric C-point, have been realized in the laboratory.*:5 Most of these demonstra-
tions have involved first-order singularities. Some higher-order singularities have been investigated in the context
of vector beams,® but none have been investigated in Poincaré beams.

In this study we present a study of the generation of Poincaré beams with high-order C-points, both symmetric
and asymmetric. We do this by exploring the superpositions of two Laguerre-Gauss modes in orthogonal states
of circular polarization. By varying the asymmetry of one of the beams we are able to generate new asymmetric
patterns not seen before.

2. BASIC RELATIONS

This work follows previous research on polarization singularities, where we studied lowest-order C-points®° and
composite C-points.® Here we focus on the case of high-order C-points, also known as hyper-C-points.'® We also
investigate the full spectrum of asymmetric C-points and the range of conditions that produce monstars. We
also want to point out that C-points are a manifestation of a more general phenomenon of disclinations and
orientation singularities. Our analysis will use disclination patterns to get a clearer view of the line structure
that underlies the polarization patterns.

The beams of light are in a general non-separable superposition of polarization and spatial mode given by

U = (cosB LG +sin B LGy™ €7) én+ LGE? ¥ ey, (1)
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where 3, v and § are phases that we can vary; ér and €y represent the polarization states of right and left
circular polarization, respectively; and LG§ is a Laguerre-Gauss spatial mode with zero radial index (entailing
singly ringed “doughnut” transverse amplitudes) and topological charge £. The spatial mode is given by?

LG = Apleteaw, (2)

where r and ¢ are the transverse polar coordinates; A, is the amplitude of the mode, given by
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with w being the half-width of the mode; G is the Gaussian function
G=e I, (4)
and W is the transverse phase propagator, given by

W = ellbr®/CR)+¢] (5)
where k is the wave vector, R the radius of curvature of the wavefront, and ¢ the Gouy phase.

3. C-POINTS

The superposition of Eq. 1 produces in general a Poincaré beam. That is, a beam with space variant polarization
that conveys a mapping of the Poincaré sphere onto the transverse mode of the light.? As is well known, the
orientation of the semi-major axis of the polarization is half of the relative phase between the two circular
polarization components in Eq. 1. When either 5 = 0 or 8 = 90° the orientation is

0 — %(qu) . (6)

where n is an integer, and where A¢ = +¢; — {5 (the sign of ¢; is positive for § = 0 and negative for 5 = 90°).
Because the the orientation varies with the transverse angular coordinate, the center of the beam is a polarization
singularity, or C-point.!” Note also that the orientation is independent of the radial coordinate 7.

The C-point is categorized by its index, which is the number of times that the orientation rotates per turn
around the C-point

Af

1o =2

c=5- (7)
or Al

Io=5-. (8)

Let us consider the simplest particular case of Eq. 1 involving ¢; = 1 and ¢ = 0. When 8 = 0 or 8 = 90°,
the mode is produced by a symmetric optical vortex in a state of right circular polarization superimposed with
a mode with a planar wavefront and left circular polarization. This gives rise to a C-point pattern that is
symmetric, where the rate of change of the orientation with the angular coordinate is linear, as seen in Eq. 6.
The case £; = 1 and ¢5 = 0 produces the smallest absolute value of I¢: 1/2. This is when the ellipse rotates by
half a turn when following a closed path around the C-point. When I = +1/2, the symmetric pattern is called
a lemon. This is illustrated by arrows in corresponding left-most pattern shown in Fig. 1. When I = —1/2, the
symmetric pattern is called a star. Lemons and stars can be asymmetric. In asymmetric cases the line orientation
changes nonlinearly with ¢. Monstar is a third type of line singularity with similarities to both lemons and stars,
but also with unique features of its own.

The number of radial lines represent directions where the semi-major axes of the polarization ellipses are
radial. The lowest-order lemon, with I = 4+1/2, has one radial line; and the lowest-order star, with I = —1/2,
has 3 radial lines. For a range of values of § the pattern has I = +1/2 but 3 radial lines. This pattern is the



Figure 1. Line singularity patterns for the lowest-order hyperlemons created by superpositions of topological charges
(€1,€2) and B =0 in Eq. 1, producing a pattern with index Ic. The cases shown are: Ic = 1/2 with (1,0); Ic = 3/2 with
(2,-1); Ic = 2 with (3,—-1); and Ic = 5/2 with (1, —4). Red solid lines denote radial lines. The case for Ic = 1/2 has
arrows added to it to illustrate the rotation of the polarization around the C-point.

monstar.'® Up to now, this notion has become the default definition of monstars: same index as the lemon and
same number of radial lines as the star. Monstars also have a separate distinctive feature that seem to be their
only defining property: sectored radiations.

We can define more accurately the number of radial lines for the symmetric cases (i.e., § = 0,90°). The
values of ¢ for which there is a radial line is obtained by equating:

0= (9)

The solutions are
by = 2nm — 6
T2 AM

Except for the case with I = 1, the number of radial lines is given by

(10)

N =[2(Ic = 1)| = [2 - A (11)

In particular, we will often use the values of I and Ng for the symmetric cases at § =0 and S = 90°:

leo = 220 (12
Ny = 2—4y 410 (13)
Icgo = # (14)
Noo = 2446+, (15)

Lemons with index higher than 1/2 index are known hyperlemons.'® In Fig. 1 we show the line patterns of
hyperlemons of increasing index. For lemons with I > 1/2, the main characteristic is the pattern of closed
curves that begin and end at the center of the pattern, also referred to as flower petals.'® They are numerically
the same as the number of radial lines (red in the figure). Thus hyperlemons can have more than one radial
line. Although we have not confirmed this analytically, the patterns for I = +3/2, Ic = +2 and I = +5/2
appear to have the form of cardioids, circles and rose petals, respectively. The line structure for a given value of
I¢ is the same for combinations of vortices that have the same value of Af. For example, A¢ = 3 gives rise to
the pattern for Ic = +3/2, which can be implemented for 3 = 0 by values of (¢, ¢s) given by (2,—1), (3,0) and
(4,1). While the orientation patterns for these cases are the same, the ellipticity patterns are not, because the
ellipticity is given by?

ezig =tan (w/4 - x), (16)



where a and b are the semi-minor and semi-major axes of the ellipse, and

Y4
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X = tan YT
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(17)

Thus, the ellipticity of the patterns depends on the particular pair of modes used.

Similarly to lemons, the index for hyperstars is Ic < —1/2. Figure 2 shows examples of hyperstars with the

lowest values of |I¢|. Stars are characterized by the number of points, which is the same as the number of radial
»18

lines. They have been referred to before as “spider webs.

Figure 2. Line singularity patterns for the lowest-order hyperstar, created by superpositions of topological charges (¢1, ¢2)
and 8 = 90° in Eq. 1, producing a pattern with index Ic. The cases shown are: Ic = —1/2 with (1,0); Ic = —1 with
(3,-1); Ic = —3/2 with (2,1); and Ic = —2 with (4,0). Red solid lines denote radial lines.

4. TRANSITIONAL PATTERNS AND MONSTARS

We have seen for the lowest-order case, monstars are transitional patterns that appear between lemons and stars.
These are situations where the number of radial lines changes from that of the lemon to that of the star but
retaining the same index of the lemon. This is not the case for high-orders, because we can have transitional
patterns between two distinct-index lemons as well as between two distinct-index stars. The question driving our
work was: Could there exist monstars in these cases? Table 2 shows the possible cases involved in a transition
from one C-point to the another. It shows that by suitable choice of /1 and ¢ we can investigate all the
possibilities.

Table 1. Types of transitions via the variation of 8 in Eq. 1. It uses the definitions of the singularity indices of Eqs. 12
and 14.

Condition B=0 B=m/2
Iopo | Pattern Icgo | Pattern
[61] > [€2] >0 | Lemon or Monstar (Ic =+1) | <0 Star
[41] < |€a], ¢2>0 | <0 Star <0 Star
[¢1] < |la|, b2 <0 | >0 Lemon >0 | Lemon

For the first case of Table 2, at 5 = 0 and Al # 2 (Io # 1), the pattern will be one of a lemon or hyper-lemon.
As we increase 3 from zero, the superposition of modes with ¢; and —¢; produces an asymmetric lemon C-point
of index Ic o with Ny radial lines when 8 < 7/4; and an asymmetric star of index Ic g9 with Ngg radial lines
when § > 7/4. This asymmetric C-point often but not always gives rise to a monstar transitional pattern. The
transition from lemon to monstar occurs for a range of values of 8 between S = 7/4 and a value of § that



depends on v, which we label 3,. For the case (¢1,¢2) = (1,0) the lowest value of 5, occurs at v = 7, and the
highest value converges to m/4 as v — 0,27. At v = 0 there are no monstars, and the lemon transforms directly
into a star through the intermediate C-line transitional pattern at § = 45° (more on this below). In our previous
work we calculated 3, = 1/tan"1(1/3) for v = 7, obtained by finding the solutions to Eq. 9 in the problem,
which gives rise to a cubic equation in sin ¢.

The more general case of Eq. 9 leads, after some algebra, to the equation:

cos Ssin ¥ + sin Bsin ® = 0, (18)
where
P = (—61—£2—2)¢+’Y—(5+2nﬂ' (20)

with n integer. Many cases can easily be solved algebraically for simple values of . Equation 18 leads to a
polynomial equation in powers of sin ¢, of order N = max(Ng, Ngo). Radicals in the solution give minimum or
maximum allowed values of 3 = 8, that mark the division between number of radial lines Ny and Ngo. This
division is the boundary between lemon or star, and monstar. We found that monstars also appear when the
extreme symmetric cases are both lemon patterns or both star patterns with distinct number of radial lines. The
more general cases can be solved numerically. Table 2 shows the values to 3, for the lemon-monstar boundaries.

Table 2. Examples of C-point transitions. Specific cases are labeled by the values of /1 and ¢z in Eq. 1, the parameters
of the patterns

[ Case | (6,02) | I Icoo [ No Nmo Nmaso Neo | Bo Biso |
Lemon-Star (1,0) | 4+1/2 -1/2 | 1 - 3 3 - 18.43°
Lemon-Star (2,1) | +1/2 —3/2| 1 5 3 5 | 38.66° 11.31°
Lemon-Star (2,-1) | +3/2 -1/2 | 1 3 - 3 | 18.43° -
Lemon-Star (3,0) | +3/2 -=3/2 | 1 3 5 5 | 11.31° 38.66°
Lemon-Star (3,-1) | +2 -1 2 4 - 4 | 26.57° -
Star-Star (1,2) | -1/2 -=3/2 | 3 - 3 5 - 31.0°
Star-Star 2,3) | -1/2 -5/2| 3 7 5 7 | 41.4°  23.3°
Star-Star (1,3) -1 -2 4 - — 6 - -
Star-Star (1,4) | =3/2 —=5/2 | 5 - 7 7 - 35.6°
Lemon-Lemon | (1,-2) | +3/2 +1/2 | 1 - - 1 - -
Lemon-Lemon | (2,-3) | +5/2 +1/2| 3 3 - 1 | 71.57° -
Lemon-Lemon | (1,—4) | +5/2 +3/2 | 3 — 3 1 — 71.57°
Lemon-Lemon | (3,—4) | +7/2 +1/2 | 5 3 — 1 | 78.69°
Monstar-Star (2,0) +1 -1 | o0 4 4 4 0 0
Monstar-Star (3,1) +1 -2 | o 6 6 6 0 0

The top third of Table 2 shows the lemon-star cases, with the first row showing the previously studied
case.” ¥ The table lists the values of 1 and fs, and the indices of the patterns for 3 =0 and 8 = 90°, Ico and
I 90, respectively. These indices also cover the asymmetric regimes for 5 < 45° and 8 > 45°, respectively. The
remaining columns report on the results of our calculations for monstar patterns, by listing the number of radial
lines that the monstar patterns have as well as the threshold values 8,. Earlier we mentioned that 8, can have
a maximum or a minimum value when ~ is either 0 or 180°, respectively. When there are monstars for at least
one value of 7, implies these may also exist for other values of v. When there are no monstars for any value of
B for v = 0,180°, we denote it with a dash. As can be seen, every case in this group of transformations has a
monstar range.

Frames (a) and (b) of Fig. 3 show monstars for cases (2, 1) and (3, 0), with indices +1/2 and +3/2, respectively.
The case (b) for (3,0) is quite interesting. For 8 = 0 there is one radial line; for 8 = 90° there are 5 radial



lines. There are monstars for both extreme values of v. However, for v = 0 monstars have 3 radial lines and for
v = 180° they have 5 radial lines. Thus, the monstar morphs from 3 to 5 radial lines at an intermediate value
of ~.

(d)

Figure 3. Four examples of monstars: (a) (¢1,¢2) = (2,1) for § = 30° and v = 180°, yielding Ic = +1/2; (b)
(£1,€2) = (3,0) for B = 30° and v = 0, yielding Ic = +3/2; (c) (£1,42) = (2,3) for B = 30° and v = 180°, yielding
Ic = —1/2; and (d) (¢1,42) = (2,-3) for 8 = 60° and v = 0, yielding Ic = +1/2. Solid red lines are radial lines, and
dashed red lines correspond to the C-lines of the corresponding cases with 8 = 45°.

The second series of entries in Table 2 are the cases where there are stars at both § =0 and 8 = 90°. Three
of four cases contain monstars. That is, monstars with a negative index. This is quite a surprising result because
in the first-order cases the monstar index is positive, and was thought to be a defining property of monstars.
Frame (c) of Fig. 3 shows case (2,3) for 8 = 30° and v = 180°. This is a monstar of index —1/2. It has 5 radial
lines (solid red). Two of those radial lines enclose sectors where lines appear to be radiating from the center.
Those sectors do not have the star-like features (hyperbolic-like lines) that avoid the center. This transformation
is shown in Fig. 4. It is a case that starts with a —1/2 star in frame (a). At § = 23.3° two radiating-line sectors
grow from one of the radial lines, producing a monstar pattern with a total of 5 radial lines, which grow to the
pattern of Fig. 3 (¢) at 8 = 30°, and reaching the pattern of Fig. 4 (b) at 5 = 44°. As 3 crosses over to 8 = 46°
in frame (c), the radiating sectors merge to become one of the hyperbolic sectors of the 7-point star, and with
3 radial lines spontaneously appearing at cusps in the lines when 8 — 45°. As § — 90° the pattern becomes a
symmetric 7-point star.

Figure 4. Transformation of a —1/2 star to a —5/2 star through a monstar. All frames correspond to the case (2,3)
with v = 180°. They divide by value of 3: 0 for (a), 44° for (b), 46° for (c), and 90° for (d). Red solid lines are radial
lines and red dashed lines are C-lines for the 8 = 45° case.



The third set of transformations in the series of entries for Table 2 involve cases where there are lemons at
both 8 =0 and 8 = 90°. By now, from Eq. 11 and Fig. 1, it must be clear that lemons can have more than one
radial line. We find mostars within the regions where lemons have the lower index. This makes sense because
when monstars arise they add new sectors, normally in pairs, as far as we can tell, and this addition requires two
more radial lines. Eventually some these radial lines morph into the radial lines of the other star pattern. Figure
3 (d) shows the monstar for the case (2, —3) at settings 8 = 60° and v = 0. All of the monstars that appear in
this set of conditions (third group of Table 2) have lemon-type sectors plus sectors with radiating lines. Thus,
in all, the commonality among all the monstar patterns is the sectors with radiating lines.

It might be intriguing that Ic = 1 is missing from Fig. 1. That is because we now classify it as a monstar.
As shown in the fourth group of Table 2, it appears when A¢ = 2 with 8 = 0. In this case there is a solution for
radial lines only for § = 2nm, a case where there are radial orientations at all the angles, as shown in Fig. 5(a).
This is also known as the radial mode, popularized by the case /1 = —f5 = 1, and known as the radial vector
mode. However, other versions of the radial mode for the case (2,0) have been shown before.® For |¢1] # 1
the semi major axes are radial, but the states are elliptical, with ellipticity depending on the radial coordinate.
When § # 0 there are no radial solutions. The case § = 7 is also known as the tangential mode because all the
semi-major axes are tangential to circles centered at the C-point. When § # 0, 7 the mode is a swirl,® with lines
that radiate from the center but that curve around in spiral-like fashion, as shown in Fig. 5(b). The number of
turns about the center increases with 9, reaching an infinite number of turns as § — 180°. Moreover, when § = 0
but 8 # 0, lines radiate from the center as we have seen with other monstars: curved trajectories but with a
finite number of them being straight and radial. This is shown in Fig. 5 (c) for (2,0) with § = 30° and v = 180°,
and (d) for (3,1) with 5 = 30° and « = 0°. The red dashed lines that define the C-lines at 5 = 45° locate one
set of radial lines. The directions half-way between these radial lines are also radial. These radial lines may not
be structurally robust, because they disappear when we let § # 0. Given the similarities with monstars, we are
led to conclude that the I = 1 case is a form of monstar.

(c) (d)

Figure 5. Patterns corresponding to the Ic = 41 for the following conditions: (a) (¢1,42) = (2,0) with 8 =0, v = 180°
and § = 0; (b) (2,0) with 8 =0, v = 180° and § = 40°; (c) (2,0) with 8 = 30°, v = 180° and § = 0; and (d) (3,1) with
B8=30°,vy=0and § = 0;

5. C-LINES AND THEIR SCARS

When § = 45° a very interesting pattern appears. It does not contain any of the C-points investigated so far. The
patterns contain C-lines, which are lines of circular polarization that divide regions that have lines of orientation
vary continuously with ¢. At the C-lines, the orientation of the lines changes discontinuously. The pattern is
divided into 2¢; sectors separated by C-lines. The angles at which the C-lines occur are given by

(2n — D)m + v

¢n = 2£1

(21)



We can understand this in simple terms by realizing that at the C-lines the amplitude of the right-circular
polarization (Eq. 1) is zero. At the C-line, the spatial mode with right-circular polarization undergoes an abrupt
phase shift of 7. Figure 6 shows an example for the case (2,—1). The intensity pattern in Fig. 6(b) shows the
features of the mode in the right-circular state. The mode is a superposition of LG’S’ 2 and LGy 2 with equal
magnitudes (i.e., because = 45°). The nodes of that mode are the dashed lines in Fig. 6(a). At those points,
the polarization is left-circular, provided by the LGy ! mode.

Figure 6. Example of a pattern containing C-lines. It correspond to the case (2, —1) with 8 = 45° and v = 180°. Frame
(a) shows the line pattern, whereas frame (b) shows the simulated mode with ellipses drawn throughout the mode. The
dashed lines in (a) correspond to the C-lines.

Within each region bound by C-lines, the orientation of the semi major axes of the ellipse follows a curve,
which is given in polar coordinates by
C —1/(£2/2+1)
1o () , (22)

Co

where ¢ is an initial value of r, C' is given by
C =cos[p(1+65/2)+7/2 —~v/4+ /2 — dr/2], (23)
and Cj is C' evaluated at the initial value ¢ = ¢¢, with

¢r = cos™ " (sign[cos((1¢) — 7/2)]) (24)

Figures 7 and 8 show the patterns for the case {1 = 2 and ¢5 = —1, for v = 0 and v = 180°, respectively. The
patterns have radial lines drawn in solid red. The dashed red lines are the C-lines that appear in the § = 45°
pattern. The interesting aspect of this is that the patterns for 8 # 0,45°,90° bear “scars” of C-lines. These
scars are kinks in otherwise smooth patterns, at the directions of the C-lines. Scars underscore the fundamental
construction of the mode via Eq. 1, which has its skeleton at 8 = 45°. Other patterns for g # 45° bear signs of
it because the line orientation changes nonlinearly due to the nonlinearity of the phase of the right-polarization:

1—tan,6’>

1+ tan g (25)

¢op =tan"! (tan(&qﬁ —v/2)
which has its greatest variation when ¢ = ¢,,, as given by Eq. 21. As [ increases or decreases further away from
B = 45°, the intensity of the scars of C-lines decreases. When [ reaches the values of the extreme symmetric
patterns (0 and 90°), pr = £(¢1¢ — v/2), and the patterns show no scars. Moreover, if we just focus on the
C-lines of the § = 45° case we see that the C-lines are singular in ellipse orientation: the orientation of the line

changes abruptly from one value to the other. Yet the lines do not need to be orthogonal, as is the case for
(1,0).5:19



Figure 7. Scars seen in the case {1 = 2 and £ = —1 for v = 0 and several values of 5 for each case. Red solid lines denote
radial lines and red dashed lines denote the C-lines for the 8 = 45° case.

B = 40°

Figure 8. Scars seen in the case £1 = 2 and £ = —1 for v = 180° and several values of § for each case. Red solid lines
denote radial lines and red dashed lines denote the C-lines for the 8 = 45° case.

6. SUMMARY AND CONCLUSIONS

Up to now, monstars had been understood as a blend of lemons and stars: same sign of singularity index as
lemons and same number of radial lines as star. The case involving /1 = 1 and ¢ = 0, which was heavily studied
before, had monstars as the intermediate case between lemons and stars.? 120 Its name is indeed a blend of
lemon and star. However, when we move to study hyper-C-points we can no longer say that the monstar has the
same number of radial lines as the star, and a distinct number of radial lines as the lemon, because then we ask:
which star or which lemon? Hyperlemons can have a large number of radial lines, as given by Eq. 11. The same is
the case with hyperstars. Moreover, we have found a new regime where monstars are now a transitional pattern
within lemons or stars. This marks a distinct realization: that there are monstars with a negative singularity
index. This is a new regime that to our knowledge has not been realized before. Therefore, we must now see
monstars more of a pattern of its own. Figure 3 shows a few cases of hypermonstars. That is, monstars with a
high singularity index. If we focus on the shape of the line pattern we see only one distinctive feature: monstars
have one or more sectors, bounded by radial lines, where the lines curve but radiate from center C-point, which
has a positive or negative singularity. After the analysis of the case I = 1 we cannot even state that a monstar
has to also have lemon-type sectors or star-like sectors, because that case does not have any; it is all monstar.
Thus, the monstar ceases to be a blend of lemon or star. It is its own monster.

Finally, we note that the asymmetric patterns have intriguing shapes. More intriguing is that as they become
more asymmetric they bear scars of a pattern of C-lines that is the midpoint in the transformation from one
type of C-point to another. We have also done measurements for all of the cases presented here, but because of



limitations of space they will be presented elsewhere. To our knowledge these results are new and have not been
reported before. At a fundamental level, they may lead to a better understanding of disclinations, which have
parallels, for example, in liquid crystals.?! In fact, disclinations in liquid crystals are in turn starting to be used
purposefully as a way manipulate light.??24

ACKNOWLEDGMENTS

This work was supported by National Science Foundation grant PHY -1506321.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

REFERENCES

. Maurer, C., Jesacher, A., Fiirhapter, S., Bernet, S., and Ritsch-Marte, M., “Tailoring of arbitrary optical

vector beams,” New J. Phys. 9, 78 (2007).

. Wang, X.-L., Ding, J., Ni, W.-J., Guo, C.-S., and Wang, H., “Generation of arbitrary vector beams with a

spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549-3551 (2007).

. Galvez, E. J., Khadka, S., Schubert, W. H., and Nomoto, S., “Poincaré-beam patterns produced by non-

separable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51, 2925-2934
(2012).

. Kumar, V., Philip, G. M., and Viswanathan, N. K., “Formation and morphological transformation of

polarization singularities: hunting the monstar,” J. Opt. 15, 044027 (2013).

. Galvez, E. J., Rojec, B. L., Kumar, V., and Viswanathan, N. K., “Generation of isolated asymmetric

umbilics in light’s polarization,” Phys. Rev. A 89, 031801 1-4 (2014).

. Khajavi, B. and Galvez, E. J., “Preparation of Poincaré beams with a same-path polarization/spatial-mode

interferometer,” Opt. Eng. 54, 111305 1-6 (2015).
Otte, E., Schlickriede, C., Alpmann, C., and Denz, C., “Complex light fields enter a new dimension: holo-
graphic modulation of polarization in addition to amplitude and phase,” Proc. SPIE 9379, 937908 (2015).

. Cardano, F., Karimi, E., Slussarenko, S., Marrucci, L., de Lisio, C., and Santamato, E., “Polarization

pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51,
C1-C6 (2012).

. Cardano, F., Karimi, E., Marrucci, L., Lisio, C., and Santamato, E., “Generation and dynamics of optical

beams with polarization singularities,” Opt. Ezpress 21, 8815-8820 (2013).

Beckley, A. M., Brown, T. G., and Alonso, M. A., “Full Poincaré beams,” Opt. Express 18, 10777-10785
(2010).

Viswanathan, N. and Inavalli, V., “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34,
1189-1191 (2009).

Jayarsuya, Y. V., Inavalli, V. V. G. K., and Viswanathan, N. K., “Polarization singularities in the two-mode
optical fiber output,” Appl. Opt. 50, E131-E137 (2011).

Niv, A., Biener, G., Kleiner, V., and Hasman, E., “Rotating vectorial vortices produced by space-variant
sub wavelength gratings,” Opt. Lett. 30, 2933-2935 (2005).

Nye, J., [Natural Focusing and Fine Structure of Light], Institute of Physics (1999).

Berry, M. and Hannay, J., “Umbilic points on Gaussian random surfaces,” J. Phys. A 10, 1809-1821 (1977).
Dennis, M., “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt. Com-
mun. 213, 201-221 (2002).

Freund, I., “Polarization singularity indices in Gaussian laser beams,” Opt. Commun. 201, 251-270 (2002).
Freund, I., “Polarization flowers,” Opt. Commun. 199, 47-63 (2001).

Galvez, E., Rojec, B., and Beach, K., “Mapping of all polarization-singularity C-point morphologies,” Proc.
SPIE 8999, 899901 1-8 (2014).

Dennis, M., “Polarization singularity anisotropy: determining monstardom,” Opt. Lett. 33, 25722574
(2008).

de Gennes, P. G. and Prost, J., [The Physics of Liquid Crystals], Clarendon Press (1993).

Stadler, M. and Schadt, M., “Linearly polarized light with axial symmetry generated by liquid-crystal
polarization converters,” Opt. Lett. 21, 1948-1950 (1996).



23.

24.

Marrucci, L., Manzo, C., and Paparo, D., “Optical spin-to-orbital angular momentum conversion in inho-
mogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 1-4 (2006).

Brasselet, E., “Tunable optical vortex arrays from a single nematic topological defect,” Phys. Rev. Lett. 108,
087801 (2012).



