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ABSTRACT

Non-separable superpositions of polarization and spatial mode of a single photon produce a state that has a
polarization that depends on the transverse position, and contains all states of polarization represented on the
Poincaré sphere. We have done measurements of the space-dependent state of polarization of single photons
prepared in distinct 2×2 (qubit-qubit) and 2×3 (qubit-qutrit) non-separable superpositions of Laguerre-Gauss
spatial and polarization states. Detection was done by polarimetry of the light projected at distinct locations in
the transverse plane. The polarization patterns had a C-point polarization singularity (lemon, star or monstar)
at the center of the transverse wavefunction.
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1. INTRODUCTION

The quantum nature of physical systems is one of the long-standing mysteries in physical science. The quantum
of light, the photon, presents unique opportunities to understand and reconcile our limited understanding of
quanta. It is now well accepted that light is made of photons and that a beam of light is a conglomerate of
photons of similar if not identical properties. When we detect a 1 mW beam from a laser pointer, we collect
2.5 × 1015 photons per second. Yet these photons are not small sections of the beam. Rather, each photon
occupies a light mode, which extends as far as the spatial mode in the transverse direction and as far as the
coherence length in the longitudinal direction. A pure spatial mode is independent of the polarization, the
pattern of oscillation of the electromagnetic field. In a traditional view, we are accustomed to picturing a photon
of a quantum of light in a single Gaussian mode and in a given state of polarization.

It has been shown that photons can be in any type of spatial mode, including helical modes.1–4 Non-separable
superpositions, the fundamental structure of entanglement, presents intriguing possibilities, creating quantum
states that have a space-variant polarization,5, 6 which are known classically as vector beams.7 As we show here,
a photon in a nonseparable superposition of spatial and polarization states yields a hybrid mode that does not
carry a unique state of polarization in the transverse-position basis. It constitutes a different view of the quantum
of light, which is predicted by quantum mechanics, but which also shows an aspect of the complexity of a single
quantum of light not seen before.

Light has a well established and sound description in the classical domain, expressed in terms of electromag-
netic waves that consist of electric and magnetic vector fields that oscillate and contort as the light propagates
and interact with media. This view extends to the quantum domain, where the oscillations of the electromag-
netic field are expressed in terms of a two-state quantum system. This two-dimensional space is conveniently
represented by points on the surface of the Poincaré sphere. The latter represents circular states with points
on the poles of the sphere, linear states with points along the equator, and elliptical states elsewhere. This
representation is also convenient because states that are antipodes on the sphere are orthogonal to each other.
Transformations of the state of polarization leading to geodesic paths on the sphere also add a type of geometric
phase to the quantum wave function, known as the Pancharatnam-Berry phase.8

Non-separable superpositions of light modes in the classical description result in polarization singularity C-
points. These are points or lines where the orientation of the polarization ellipses is singular. Scalar modes of
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light contain phase singularities, or optical vortices, but these are solutions of the scalar wave equation, and
so are common to separable states of light. In contrast, C-points are specific consequences of a non-separable
superposition of polarization and spatial modes.

In this article we present a direct measurement of the light mode that is a result of a nonseparable super-
position of polarization and spatial mode. In Sec. 2 we present the theoretical description. It is followed by
Sec. 3 on the experimental procedure. We present the experimental results in Sec. 4, followed by discussion and
conclusions.

2. THEORETICAL FRAMEWORK

Laguerre-Gauss (LG) modes are a complete set of paraxial modes.9 In contrast to polarization, spatial modes
form an infinite space. Thus, more information can be stored in spatial modes (such as an image) than in the
polarization of a single photon.10 LG modes are of interest because they carry orbital angular momentum.
They carry a phase which varies as exp iℓϕ, where ϕ is the angular coordinate in a plane that is transverse to
the propagation direction, and ℓ is an integer known as the topological charge. Thus, the wavefront of the light
in an LG mode consists of ℓ-intertwined helices, and photons can exist in such spatial modes,1 as demonstrated
previously by our group.3 The process for producing photon pairs, spontaneous parametric down conversion,
conserves orbital angular momentum.1, 11 We exploit this in our laboratory methods, as described below.

The traditional picture of a photon has it in a separable state of polarization and spatial mode. For example,
one such mode can be

|ψ⟩ = |ℓ⟩|E⟩, (1)

where |ℓ⟩ represents an LG spatial mode with topological charge ℓ, and |E⟩ represents a state of polarization. For
example, the state |0⟩|H⟩ represents a photon with ℓ = 0 and linearly polarized along the horizontal direction,
just how we would picture the photons coming out of a laser. The classical picture for photons in this state is
that of a paraxial Gaussian wave with planar of spherical wavefronts, with the electromagnetic field at every
point being horizontally polarized. A more interesting state is

|ψ′⟩ = 1√
2

(
|1⟩|R⟩+ eiδ|0⟩|L⟩

)
. (2)

It is a superposition of a spatial mode with ℓ = 1 right circularly polarized with a spatial mode with ℓ = 0
left circularly polarized, and with a relative phase of δ. Such a state is straight forward to produce say with
an interferometer, and to visualize it classically as a coherent superposition. However, as seen from the quantal
point of view, it involves the state of a single photon that is nonseparable, which would measure a violation of
Bell inequalities refuting realism but not nonlocality. There is debate whether this state can be called entangled
or not because it involves a single photon.

From the previous discussion, a single photon in the state of Eq. 2 has a peculiar form: it contains (all) states
of polarization correlated with the spatial coordinates. If points in the transverse plane are expressed in terms
of polar coordinates (r, ϕ), we can decompose the spatial modes into continuous-variable states

|ℓ⟩ =
∫ ∫

dr dϕ Aℓr
|ℓ|+1G(r)eiℓϕ|r, ϕ⟩, (3)

where

Aℓ =

(
2|ℓ|+1

π|ℓ|!)

)1/2
1

w|ℓ|+1
; (4)

is a normalization constant and G(r) = exp(−r2/w2) is a Gaussian function, with w representing the paraxial
spatial width of the photon. We will assume planar wavefronts for simplicity. Replacing Eq. 3 into Eq. 2 yields

|ψ′⟩ =
√
2√
πw

∫ ∫
dr dϕ g(r)

(√
2

w
reiϕ|R⟩+ eiδ|L⟩

)
|r, ϕ⟩. (5)



Because an arbitrary state of polarization can be expressed as a superposition of orthogonal states of polarization
with distinct amplitudes and phases, a measurement of the photon in a particular location will find it in a unique
state of polarization. For example, at r = 0 it is left circularly polarized, and at r = rl = w/

√
2 it is linearly

polarized along an axis oriented by θ = ϕ/2 − δ with respect to the horizontal. A theoretical modeling of the
pattern, corresponding to the measured data is shown in Fig. 1(a) for δ = π/2. Such polarization multiplicity
of a single photon is quite intriguing, and distinct from a simplistic view of a photon. (i.e., in state |ψ⟩). For
r < rl (r > rl) the states of polarizations are right-handed (left-handed) ellipses, with ellipticity given by

ϵ = tan

[
π

4
− tan−1

(
w√
2r

)]
. (6)

In the experiments we obtain the ellipse orientation and ellipticity via the measured normalized Stokes parameters
s1, s2 and s3: θ = tan−1(s2/s1) and ϵ = cos−1 s3.

Figure 1. Theoretical modeling of the spatial projections of the polarization state of the light for: (a) the case of state
|ψ′⟩ (Eq. 2), which corresponds to a lemon polarization singularity pattern; and (b) the case of state |ψ′′⟩ (Eq. 7), which
corresponds to a star polarization singularity pattern. Color denotes the orientation of the ellipses and color saturation
corresponds to probability. delta = π/2 for both cases.

We can produce such a state classically with a coherent beam via superposition in an interferometer, where
one beam has ℓ = 1 and is right circularly polarized, and the other one is ℓ = 0 and is left circularly polarized.
The resulting beam is part of a class of beams called Poincaré beams.12, 13 The interesting aspect of the state of
Eq. 2 is that the transverse plane can be viewed as a mapping of the Poincaré sphere onto it.13 Moreover, the
polarization patterns in these beams are of intrinsic interest because they contain C-point singularities at points
in the transverse plane where the component beams contain optical vortices. These points are singular in ellipse
orientation, and so are circularly polarized.13

The state of Eqs. 2 and 5 produces a type of symmetric polarization singularity known as a left-handed lemon
(Fig. 1(a)), where ellipse orientations rotate with the angular coordinate (at half the rate: dθ/dϕ = +1/2).
It is left-handed because the C-point and surrounding ellipses are left-handed. If we exchange the states of
polarization, as in

|ψ′′⟩ = 1√
2

(
|1⟩|L⟩+ eiδ|0⟩|R⟩

)
, (7)

we create a right-handed symmetric star, shown in Fig. 1(b), in which the surrounded ellipses rotate with the
rate dθ/dϕ = −1. Conversely, if instead of exchanging the states of polarization we use the spatial state | − 1⟩
with right-handed polarization, we would get a left-handed star.



The previous state is in a 4-dimensional space: formed by a spatial qubit and a polarization qubit. We can
add a third spatial mode to form a spatial qutrit. A simple case, but of classical relevance is the one described
by the state

|ψ′′′⟩ = 1√
2

[
(cosβ |+ 1⟩+ sinβ eiγ | − 1⟩)|R⟩+ eiδ|0⟩|L⟩

]
, (8)

where β controls a superposition of two spatial eigenstates of unit topological charge but opposite sign, and γ
the phase in between them.

The spatial state associated with right-handed polarization contains an asymmetric optical vortex. State
|ψ′′′⟩ represents the full array of polarization singularities.15 Except for the cases β = 0, π/4, π/2, they contain
asymmetric singularities including a third type of C-point known as a monstar. The exact range of values of β
that create a monstar depends on γ. For example, the least asymmetric cases arise for γ = π, leading to lemons
for 0 > β > βm, with βm = tan−1(1/3) ≃ 18.43◦, monstars for βm < β < pi/4 and stars for π/4 < β < π/2.

3. APPARATUS

The apparatus is shown in Fig. 2. We used a heralded photon source via spontaneous parametric down-conversion
with type-I phase matching. Photons from a pump laser had a wavelength of 351 nm (argon-ion, 40-80 mW).
We selected the degenerate non-collinear pairs with a wavelength of about 702 nm. The pump laser was focused
to a waist of about 50 µm at the down-conversion crystal (beta-barium borate). The heralding photon was
sent to a single-mode fiber (SMF), which projected the spatial mode of the photon to the ℓ = 0 state. Because
of orbital-angular-momentum correlations present in down-conversion, this projected the spatial mode of both
down-converted photons.10

To encode the state of Eqs. 2 or 8, we used a 512×512 spatial light modulator (SLM), from Boulder Nonlinear
Inc., in the reflection, as opposed to diffraction, mode. In this mode, the SLM encoded a phase pattern on the
vertical component of the light, and just reflected the horizontal component. The half-wave plate (HWP) before
the SLM was adjusted such that after loss due to pixelation diffraction in the SLM, there were two equal-
amplitude polarization components after the SLM. An additional phase shifter before the SLM pre-compensated
a phase introduced by a folding mirror after the SLM. This way, it controlled δ in Eq. 2. A quarter-wave
plate immediately after the folding mirror converted linear polarization to circular polarization. This way, one
polarization component was encoded with a spatial mode, and the other orthogonal component stayed with the
incoming ℓ = 0 spatial mode.

The type of state has been produced classically using a Mach-Zehnder type interferometer.15 That arrange-
ment works well with the (long) coherence lengths of coherent laser sources. However, the tight restrictions
of large bandwith sources, as is the case of down-converted photons, adds challenges to the alignment and to
decohering effects. One step in eliminating the decohering effect is to use a Sagnac type of interferometer, as
done successfully before.4 The present scheme is a new one, involving in-beam interference. Should we want
to encode a mode also in the other polarization component, we would only need to rotate the polarization and
send the light through a second SLM, where now the component with the spatial mode is just reflected, and the
component in the Gaussian mode becomes encoded.

An example of the encoding of the general spatial mode of Eq. 8 is shown in the insert to Fig. 2. The
superposition of two topological charges of different amplitudes yielded the phase structure of an optical vortex
with a nonlinear phase gradient and with the same sign as the component of largest amplitude (controlled by
β).

The next stage in the apparatus involved measuring the quantum state. This involved projecting the state
into the position and polarization bases. Because the order of the projections does not change the result, we
projected the polarization before we projected the position. For projecting the position we had a large-area
(20 mm diameter) fiber collimator connected to a multimode fiber. This effectively acted as a bucket detector.
Before it we had an adjustable iris that was scanned in a two dimensional plane via stepper motors, forming an
N ×N picture of the transverse intensity, with N set to a value between 10 and 20. Before the scanning iris was
a polarization filter set to one of six polarization states: linear horizontal (H), linear vertical (V ), linear diagonal
(D), linear anti-diagonal (A), circular right (R) and circular left (L). These projections constituted a tomography



of the polarization qubit, yielding the Stokes parameters and a complete measurement of the polarization state:
S0 = NH + NV , s1 = (NH − NV )/S0, s2 = (ND − NA)/S0 and s3 = (NR − NL)/S0, where the last three are
the normalized Stokes parameters, with Ni representing photon counts for filter i. Typically, maximum counts
on a given scan were of the order of few hundred photon counts per second. We selected the polarization filter
states using either the quarter-half-polarizer (QHP) or half-quarter-half-polarizer (HQHP) polarization filters,
as shown in Fig. 2. The advantage of the 4-element filter is that the orientation θ and ellipticity ϵ of the state of
polarization were controlled independently by the first and second half-wave plates, respectively.13 This made
it easier for calibrating the apparatus.

Figure 2. A schematic of the apparatus used to generate and encode non-separable states. It consists of lenses (L),
a nonlinear crystal (BBO), single- and multi-mode fibers (SMF, MMF), quarter-wave plates (Q), half-wave plates (H),
polarizers (P), phase-shifter (PS), folding mirror (FM) and a spatial light modulator (SLM). An x-y stage holding an iris
(I) was moved by two motors in the transverse plane. The insert is an example of a bitmap we display on the SLM to
encode a spatial mode onto the beam.

.

The photons collected by the fibers (single-mode for the heralding photon and multi-mode for the heralded
photon) were passed through 40-nm band-pass filters centered at 702 nm, and were detected with avalanche
photodiodes. An automated computer program acquired data, moving the stepper motors and recording the
photon counts for specified time intervals. Six images were recorded for each setting of the polarization filter,
and these were used to calculate the state of polarization of each projected point.

An example of the parameters for a given measurement, a scan with N = 18 had an iris diameter set to
d = 2 mm. When the polarization filter was set to transmit the |H⟩ state, the pixel with the highest intensity
had about 340 single-photon counts (coincidences) per second. We took a full iris scan for each of the six settings
of the polarization filter. The results shown in the next section correspond to point-by-point images taken under
similar settings.

To verify that the light exhibited non-classical features we measured the degree of second order coherence
g2(0) for a few conditions. This involved adding a beam splitter before the translating iris (left wide open), and
a second wide collimator to capture all the light reflected by the beam splitter. This modification is not shown
in the Fig. 2. In these measurements we detected the singles at the detectors, double coincidences with the
heralding spatial-mode-projection detections, and triple coincidences. We did not scan the iris. We left is wide
open and recorded the entire photon signal. We did this for all filter settings. In all cases we obtained g2(0) < 1
(e.g., 0.62± 0.08), consistent with non-classical light.

4. RESULTS

The C-point lemon and star that results from polarimetry of the qubit-qubit state is shown in Fig. 3 (a) and
(b), respectively. The C-point star pattern is generated from the same qubit-qubit state by reversing the first
quarter-wave plate (QWP) after the SLM in the apparatus. The state of the photon in Figs. 3 (a) and (b)



correspond to those of Eqs. 2 and 7, respectively, but with a relative phase between the two terms of π/2. The
data is plotted in the same way as Fig. 1: color denotes the orientation of the polarization ellipses, and saturation
denotes photon counts. In the case of the figure, maximum saturation corresponds to about 2200 photon counts.
The ellipses drawn at each data point correspond to the polarization ellipse obtained by doing a polarization
tomography of the photon projected in the transverse position basis.

Figure 3. Images resulting from polarimetry of heralded single photons the qubit-qubit state, taken with pump laser
power of 40 mW and with an iris diameter d = 2 mm. The scans were 12x12 pixels. The patternt of frames (a) and (b)
correspond to a C-point lemon and star, respectively.

A comparison of the simulations of Figs. 1 with those of Fig. 3 show excellent agreement with no adjustable
parameters. The experimental results are in remarkable agreement with previous measurements with classical
light.15 We also confirmed the rotation of the patterns with δ, which was varied by the phase shifter in Fig. 2.

We extended the previous analysis the qubit-qutrit state of Eq. 8, shown in Fig. 4. The spatial-mode basis is
then composed of a superposition of topological charges +1 and −1 in a right-hand circular polarization state,
with the spatial mode of topological charge 0 in a left-handed circularly polarized state. The superposition of
the +1 and −1 modes is effected by the encoding in the SLM. The key element of this work is the projection of
the spatial mode of the photon on its down-converted partner. This selects the spatial mode over a range that
are produced by down-conversion, and reason that we can deliberately encode a spatial mode of our desire via
the spatial mode. The component with the spatial mode with topological charge of zero is what remains by not
altering its spatial mode.

The signature of a superposition of two optical vortices with +1 and −1 topological charges with unequal
amplitudes is a mode with an optical vortex (that of the mode with greatest amplitude) but with a phase
gradient that is not constant. The pattern programmed in the SLM, shown in the insert to Fig. 2, also shows
this nonlinear phase variation. The nonlinearity then manifests in the symmetry of the pattern, as seen in Fig. 4.
As the parameter β is varied, the variation of the change in the orientation of the polarization ellipses gets
concentrated along the horizontal axis that passes through the center of the beam. The center of the pattern
displays a polarization singularity C-point, with the one with β = 0 known as a lemon. As β increases one can
see its effect on the polarization variation of the mode. The modes with β = 20◦ and β = 30◦ correspond to the
monstar C-points. When β = 45◦ there is no C-point, and the orientation changes abruptly from the top to the
bottom of the pattern. Speaking in terms of spatial modes, the underlying spatial mode is a Hermite-Gauss one
with a node along the horizontal axis. Past β = 45◦ the underlying topological charge of the mode is −1, and
the C-point pattern is a star. The one with β = 60◦ has a nonlinear variation in the orientation, but the one
with β = 90◦ has a linear variation.



Figure 4. Images resulting from polarimetry of the qubit-qubit state for different values of β.

An interesting question that we are currently investigating is the connection between the degree of polariza-
tion, defined by

DoP =
√
s21 + s22 + s23 (9)

and the purity of the quantum state, defined by tomography tests, such as concurrence and linear entropy. Our
preliminary analysis finds a degree of polarization that varies from point to point, being close to unity around
the center, but reducing to about 0.4 in the center of the pattern. We are also in the process to set up and
perform quantum state tomography of the states that we prepared. This question raises interesting prospects
for using polarimetry of the spatially projected state to infer the purity of the quantum state. Recent work that
prepare similar superpositions but with polarization entanglement with the partner photon shows a point by
point variability in the entanglement.14

In summary, we have performed an experiment that prepares single photons in a non-separable state that
exhibits C-point polarization singularities. Our data is in remarkable agreement with previous experiments done
by our group with classical light.15 The experiment is part of a program to produce entangled states of photons
with desired states of polarization.16 Toward this end, we have developed a way to encode the spatial modes
onto single photons using same-path interferometry in connection with spatial light modulators. The experiments
raise interesting prospects for understanding at a deeper level the connections between classical coherence and
quantum information.17, 18
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