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Chapter 1

Complex Light Beams

Enrique J. Galvez

Department of Physics and Astronomy, Colgate University

1.1 Introduction

Optical beams of light derived from lasers have been useful for many

applications for a long time. The invention of lasers has led to our ability to

control very precisely many parameters of the light, such as wavelength and
time. In many cases the spatial mode and polarization of the light has

remained constant. However, most recently, the technology has evolved to

allow us greater control over the light, enabling us to control the phase,
amplitude and polarization within a light beam. Complex light refers broadly

to beams of light where one or more parameters are changed within the beam

of light. In particular, spatial modes have received much attention, generated
either directly from lasers or by manipulation of the wavefront via diffractive

optical elements. These studies have led us to Laguerre-Gauss beams, Bessel

beams and Airy beams. The control of their depth of focus and width have
found application in high-resolution confocal and multiphoton microscopes at

near or below the diffraction limit.
In this chapter article I delve into complex light by treating the most

important beams of light that are useful for research in many areas of science

and technology. It includes a description of the functional forms of the modes
and their parameters, which lead to better resolution and deeper penetration

into matter. I will first cover the fundamentals of Gaussian beams, which are
naturally generated by a laser, and which constitute the workhorse of
laser-based research on multiphoton and confocal microscopes, and in
manipulation of matter via optical forces. I will then continue with
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interesting optical realizations that carry a new range of physical phenomena,
such as optical vortices and orbital angular momentum in the case of

Laguerre-Gauss beams, diffraction-less propagation and self-reconstructing

beams in the case of Bessel and Airy beams, or space-variant polarization
and singularities in polarization in the case of vector and Poincaré beams.

The different sections also discuss and cite the various methods for producing

these beams. The hope is that they will stimulate new research in imaging,
manipulation, and new areas where complex light has yet to make an impact,

leading to the discovery of new phenomena and applications.

1.2 Gaussian beams

In this section we discuss optical beams that are described by a Gaussian

intensity profile. This is the case of laser beams. Thus it is important to begin

with a discussion of the fundamental Gaussian beam and its properties. We
then follow with sections describing important high-order Gaussian beams,

which are also beams that can be derived from the fundamental one.

1.2.1 Fundamental Gaussian beams

We begin by deriving the equation of the fundamental Gaussian beam. This

treatment is also covered in standard textbooks on lasers [45, 40]. In classical
electromagnetism, light is represented by an electromagnetic wave, with

electric and magnetic fields that obey Maxwell’s equations. Since the electric
and magnetic fields are related to each other, it is usual to express light in

terms of one of them: the electric field

−→
E = E0Ψê, (1.1)

where E0 is the scalar magnitude of the field of the beam, Ψ is a normalized

wave function, and ê is a unit vector. The scalar part of the field must satisfy
the wave equation

∇2Ψ−
1

c2
∂2Ψ

∂t2
= 0, (1.2)

where

∇2 =
∂

∂x2
+

∂

∂y2
+

∂

∂z2

is the Laplacian and c is the speed of the light. For a harmonic wave, we can
introduce a trial solution that separates out the time dependence:

Ψ(x, y, x, t) = U(x, y, z)e−iωt, (1.3)

where U depends only on the spatial coordinates. Then by replacing Eq 1.3

into Eq. 1.2 we arrive at the Helmholtz equation:

∇2U + k2U = 0, (1.4)
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where k = ω/c. We will be restricting ourselves to optical beams that are
likely produced by lasers. These are collimated beams that have a finite

transverse extent, and travel mainly in one dimension, say along the positive

z axis of a Cartesian coordinate system. Thus we can require a solution to be
similar to a plane wave, with a term exp(ikz). Therefore we propose that the

solution has to be of the form

U(x, y, z) = U0(x, y, z)eikz . (1.5)

Replacing Eq. 1.5 into Eq. 1.4 and simplifying we get

∂2U0

∂x2
+
∂2U0

∂y2
+
∂2U0

∂z2
+ 2ik

∂U0

∂z
= 0. (1.6)

A beam is a wave of finite transverse extent, so diffraction causes the beam

to spread as the light travels. To account for this diffraction we allow U0 to
depend on z. We can picture this the following way: the intensity of the light

for fixed values of the transverse coordinates, x and y, is going to decrease as

z increases. Thus we can say that U0 changes slowly with z, and thus neglect
the term ∂2U0/∂z2 compared to the other ones and remove it from Eq. 1.6.

The resulting equation is

∂2U0

∂x2
+
∂2U0

∂y2
+ 2ik

∂U0

∂z
= 0. (1.7)

It is called the paraxial wave equation.

We proceed to find U0 by requiring that it have the form

U0(x, y, z) = Ae
ik(x2+y2)

2q(z) eip(z). (1.8)

Replacing Eq. 1.8 into Eq. 1.7 we get separate equations for q(z) and p(z).

The solution for q(z) is

q(z) = z − izR, (1.9)

where zR is a constant known as the Rayleigh range. A more appropriate
way to write this equation is

1

q(z)
=

1

z +
z2
R
z

+
i

z2

zR
+ zR

. (1.10)

The solution for p(z) is

eip(z) =
w0

w
e−iϕ(z), (1.11)

Inserting Eqs. 1.10 and 1.11 into Eq. 1.8 yield

U0(x, y, z) = A
w0

w
e
− x2+y2

w2 e
ik(x2+y2)

2R e−iϕ, (1.12)

where the beam spot of the beam w now depends on z:

w = w0

√
1 +

z2

z2
R

, (1.13)
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and where the constant w0 is called the beam waist. The Rayleigh range zR
is related to the waist by:

zR =
πw2

0

λ
. (1.14)

The above relation is the traditional and useful way to relate zR and w0, but
a more intuitive relation is

zR

w0
= π

w0

λ
, (1.15)

relating the ratio of zR and w0 to the ratio of w0 and λ. A new term that

appears in the solution, R, is the radius of curvature of the wavefront, which
also depends on z:

R = z +
z2
R

z
(1.16)

Equation 1.12 also has a new phase ϕ, given by

ϕ = tan−1(z/zR), (1.17)

and known as the Gouy phase.

Rewriting the solution to the wave function, we get

Ψ(x, y, z, t) = A
w0

w
e
− x2+y2

w2 ei(kz−ωt)e
ik(x2+y2)

2R e−iϕ (1.18)

The first three terms specify the amplitude of the wave, and the next
three terms contain the phase of the wave embedded in the exponential

terms. It is important to understand the meaning of these terms, as they

describe the properties of the beam. Below we analyze the most important
features of them in detail.

1.2.1.1 The beam spot w

The function w of Eq. 1.13 represents the half width of the beam, also known

as the beam spot. Figure 1.1. shows a graph of w as a function of z. When
z = 0 the beam spot is w0, also known as the waist, and is the smallest value

that w(z) can have under this description. In the positive and negative z

directions w increases. Thus, the point z = 0 is either some type of starting
point. Indeed, the central point of most lasers is a waist. Once the light

comes out of a laser, its width w increases due to diffraction, which is

accounted by the solution. Figure 1.1. also describes the width of a beam
when it is focused by a lens. Below we will discuss how to control the size of
the waist when we focus a beam of light. When z = zR the beam spot is

w =
√

2w0. This point is an important parameter in the propagation of the

light: it marks the transition from the beam being nearly constant to one

that increases linearly with z.
When we focus a beam of light with a converging lens, and think of the

light as a set of parallel rays, we imagine those lines to cross exactly at the

focal point. However, when |z| < zR the ray description of the propagation of
the light breaks down, and the wave aspect sets in. When z � zR the waist

becomes linearly dependent on the distance from the waist: w ' (w0/zR)z.
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Figure 1.1. Graph of the beam spot of the beam (solid blue) and wave-
fronts (black, dash-dot). The red dashed line corresponds to the graph
of w = θz (see text).

This asymptote is shown by the red dashed line in Fig. 1.1. Because in this

regime the beam spot expands nearly linearly, we can express it as

w = θz, (1.19)

where θ is called the divergence angle of the beam, which, using Eq. 1.14, can

be written as

θ =
λ

πw0
=

√
λ

πzR
. (1.20)

The divergence angle is also associated with the numerical aperture of the

beam, similar to the concept used in imaging. This treatment is valid as long
as the beam is paraxial, and justifies the approximations made. This analysis

is for divergence angles below about 0.5 rad, or about 30 degrees. More
intuitively, this condition means that the beam width has to be much larger

than the wavelength.

We can also see that the divergence of the beam is consistent with
diffraction. For example, the divergence of the first diffraction minimum from

a circular aperture of radius a when it is illuminated by a plane wave is given

by

θ =
1.22λ

2a
.

In our case we could visualize the waist of our optical beam as a fuzzy

Gaussian aperture of radius w0.
In “ordinary” situations we have that the following relation holds

λ� w0 � zR. (1.21)

Let’s do a numerical example: if we have a HeNe laser beam (λ =632.8 nm)

that is focused to a spot w0 = 0.5 mm, the Raleigh range comes out to be
zR = πw2

0/λ = 1.2 m. In examining Eq. 1.15, we see that as w0 decreases, zR
decreases more rapidly, so that as w0 approaches λ, zR approaches w0.

Efforts to produce 3-dimensional imaging with confocal microscopes relies on
creating the conditions where both w0 and zR are small, and filtering the

light with apertures.
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1.2.1.2 Beam intensity

The explicit expression for the amplitude is

U0 =

√
2

π

1

w
e−r

2/w2
, (1.22)

which in the transverse plane has the typical Gaussian profile, as shown in
Fig. 1.2.
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Figure 1.2. A 3-D view of the magnitude of the amplitude of the fun-
damental Gaussian beam as a function of the transverse coordinates.

The irradiance of the beam is defined as the energy per unit area per unit
time delivered by the beam on a surface. It is given by

I =
cε0

2
(E0U0)2, (1.23)

If we integrate the irradiance, we get the total power of the beam:

P =

∫ ∞
0

I 2πrdr =
cε0

2
E2

0 . (1.24)

It is usual to know the total power of a beam because it can be measured

easily with a power meter. By combining the previous equations we can
express the irradiance of the beam in terms of the total power of the beam:

I =
2P

πw2
e−2r2/w2

. (1.25)

Should we send the beam through a circular aperture of radius a, the

transmitted power will be

Pa = P
(

1− e−2a2/w2
)
. (1.26)

If we set a = w, we will get 86% of the light through, and if we set a = πw,
we will get 99% of the light through.

At r = 0 the dependence of the amplitude with z is given by 1/w. From

the analysis of w in the previous section we gather that for z < zR the
intensity is nearly constant, but for z � zR, since w ∝ z, the intensity

decreases as 1/z2.
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1.2.1.3 Wavefront

The wavefront is normally referred to the surface that contains the points of

equal phase. The first phase term of Eq. 1.18, exp[i(kz − ωt)], represents the
phase of a plane wavefront perpendicular to z. All alone, it would represent a

plane wave. The next phase term, exp(ik(x2 + y2)/2R) represents a
correction to the planar phase front, reflecting the expansion of the beam. It

has the same variation as that of a spherical surface of radius R. However,

per Eq. 1.16, R depends on z: at z = 0 the radius of curvature is R =∞ (i.e.,
a vertical plane, as shown in Fig. 1.1.). When z � zR then the radius of

curvature is R(z) ' z, carrying the phase a spherical surface traveling away

from z = 0. A special point is z = zR, where the radius of curvature is
R = 2z. This distance is also known as the confocal parameter. It is

important for many problems in laser-beam optics such as in designing laser

resonators. In these cases the laser medium is put in between two spherical
mirrors of radius of curvature equal to their separation.

1.2.1.4 Gouy phase

The last phase term in Eq. 1.18 is almost always overlooked or not even

mentioned in basic treatments in optics, but it is important in understanding
complex light beams. It is the Gouy phase, given by Eq 1.17. It is a phase

that arises due to diffraction. The warping of the wavefront from z = 0 to
z � zR comes at a cost: an additional phase is accrued by the light wave.

The accumulated Gouy phase can be as high as π from end to end when

focusing a beam (and higher for high-order beams, as discussed below).
However, it is an overall phase, so if the beam is not interfering with another

beam coherent with it, this phase has no effect.

Fig. 1.3. shows a graph of the Gouy phase, which depends on the
propagation coordinate. This phase changes rapidly between z = −zR and

 z/z
R

-5 0 5
-0.5

0

0.5

Figure 1.3. Graph of the Gouy phase ϕ(z)/π.

z = +zR, and reaches asymptotes ±π/2 when |z| � zR.
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1.2.1.5 Momentum

A photon of light has an energy given by

E = hν, (1.27)

where h is Plank constant and ν is the frequency of the light. A beam of light

with a wavelength of 500 nm consists of photons, each with an energy of

4× 10−19 J. Thus the number of photons traveling in a beam of power P is

N = P/E, (1.28)

which for 500-nm light translates into 2.5× 1015 per second. At the same

time, a photon also carries a linear momentum of

p = E/c, (1.29)

where c is the speed of light. The momentum for a photon of wavelength 500

nm is 1.3× 10−27 kg m s−1, which is quite small to make a visible effect on a

macroscopic object. However, on a microscopic object light can exert a
significant force. A particle that absorbs all of the light incident upon it will

experience a force

F = Np, (1.30)

which for the photon of our example is 3.3 pN. This force is greater than the

weight of a 5-µm plastic sphere: 0.67 pN.

The realization of these magnitudes and the wide-spread use of lasers has
led to the development of optical tweezers, which can trap and move

micron-sized objects in a small sample, such as a microscope slide. Moreover,

when light is focused on transparent objects they refract the light, changing
its direction, and thus receiving a recoil force. This situation is so fortunate

that a transparent object immersed in a liquid of distinct index of refraction

can be trapped at the waist of a focused beam of light [4, 41]. This is shown
schematically in Fig. 1.4.: two rays aimed above the center of a transparent

sphere refract. In doing so, the initial momentum of the rays, pi, leaves the
sphere with a final momentum pf . The change in the momentum of the light,

∆p, results in a recoil momentum of the sphere precoil that pushes the sphere

toward the focus of the light. This is the principle of optical tweezers [33].
The previous argument is the one that is most appropriate for objects of size

greater than about a micrometer. For smaller-size spheres a better approach
is one that treats the sphere as a radiating dipole, and its interaction with
the light leads to a potential energy gradient that pulls objects to the focus

of the light [49].

Figure 1.5. shows images of a sphere trapped in an optical tweezer setup.
Frames (a), (b) and (c) show the motion of the labeled sphere through a

sample with other spheres. The sideways motion can go as fast the trap can
overcome the viscous drag force[47]

Fdrag = 6πηav, (1.31)

where a is the radius of the sphere (2.5 µm), v the velocity of the sphere (5
µm/s) and η the viscosity (of water, 0.001 Pl), which results in a magnitude
of 0.24 pN. The three-dimensional aspect of the trap is observed in the

frames (d), (e) and (f), where the sample was moved in and out of focus

while the trapped sphere remained in focus. Gaussian beams have had a huge
impact in biomedical research via the manipulation of subjects under the

microscope, in the device known as optical tweezers. [41, 32]
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Figure 1.4. Diagram of light rays, refracted by a sphere showing how
the change in momentum of the light translates into a recoil of the sphere
toward the focus of the rays.

Figure 1.5. Images of latex spheres trapped in optical tweezers. Frames
(a)-(c) shows the effect of lateral trapping via the motion of the trapped
sphere (marked by an arrow) relative to the field of other spheres in the
sample. Frames (d)-(f) shows axial trapping of the labeled sphere, which
remains in focus while the others go in and out of focus.

1.2.1.6 Gaussian-beam optics

It is important to mention that, unlike beams of light carrying images,

Gaussian beams do not follow the simple rules of geometric optics such as

the thin lens formulas. This is because Gaussian beams straddle a regime
between a ray and wave. The correct treatment of propagation of Gaussian
beams is given by the ABCD theory of Gaussian-beam propagation [40].

Because q(z) and p(z), of Eqs. 1.9 and 1.11, respectively, define the wave
function of the light, we must follow the changes that those parameters incur

during propagation. In this regard, it is instructive to realize that Eq. 1.10
can be rewritten as

1

q
=

1

R
+ i

λ

πw
, (1.32)
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which relates the real and imaginary parts of q to R and w. Thus to find the
values of R and w along an optical system we only need to know how to find

q as a function of z.

For propagation through free space between points z1 and z2, the
transformation for q is given by

q1 − z1 = q2 − z2. (1.33)

Thus, combining Eqs. 1.32 and 1.33 can lead to a method of obtaining R and

w at all points starting from a given set of initial points. The effect of a lens

on a Gaussian beam results in a change in the radius of curvature of the
wavefront:

1

R2
=

1

R1
−

1

f
, (1.34)

where R1 and R2 are the radii of curvature of the wavefront before and after
the lens, respectively, and f is the focal length of the lens. The sign

convention for R is: positive when the center curvature is to the left, and

negative when it is to the right. This is shown in Fig. 1.6. for a particular
case where R1 > 0 and R2 < 0. It is easy to see that if the incoming beam on

a converging lens of focal length f has a large radius of curvature (say

R1 =∞), then the radius of curvature of the light after the lens is R2 = −f .
This seems to imply that the waist past the lens will be a distance R2 from

Figure 1.6. Change in the radius of curvature of the wavefront by pas-
sage through a lens.

the lens. However, this is only true if zR,2 � R2. Otherwise, we need to

propagate q to the waist (i.e. where R is infinite and w is minimum). If we
combine propagation with the effect of the lens, we find that the location of
the waist is given by [42]

z2 =
R2

1 + [R2λ/(πw2
2)]2

, (1.35)

where w2 is the beam spot of the beam just after the lens, which is the same
as the beam spot just before the lens, w1. The new waist is given by

w02 =
w2

{1 + [πw2
2/(R2λ)]2}1/2

. (1.36)

Notice that when

R2 � πw2
2/λ. (1.37)
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we get

z2 ' R2 (1.38)

and

w02 '
λR2

πw2
. (1.39)

Note that Eq. 1.37 is readily satisfied in situations where we want to focus a

beam with a short focal length lens. For example, a visible laser beam with a

width of 1 mm and a visible wavelength of 632 nm gives πw2
2/λ ∼ 5m. If

R1 � f , then we only need f ∼ R2 to be less than a meter or so. In many

applications we need to get the smallest waist possible. From Eq. 1.39 we get

that what we need to do is to have the largest value of the input width w2

and the smallest value for R2. If the incoming beam has R1 � f , then

R2 ' f , which implies that we need a lens with the shortest focal length
possible. For other cases we need to apply the full formalism.

1.2.2 Hermite-Gaussian beams

In the previous section we found a solution to the paraxial wave equation by

introducing a solution with an initial mathematical form. However, the final
solution was “rigged” from the start: it was forced to be symmetric about the

transverse plane. A more general solution would allow solutions with distinct

dependencies on x and y coordinates. Thus, a more general trial solution is

U0(x, y, z) = Ag(x, z)h(y, z)e
ik(x2+y2)

2q(z) eip(z). (1.40)

The solution of the paraxial wave equation yields independent functions g

and h that are Hermite polynomials [45]:

Um,n(x, y, z) =
A

w
Hm(

√
2x

w
)Hn(

√
2y

w
)e
− x2+y2

w2 e
ik(x2+y2)

2R e−iϕ(z). (1.41)

The constant term in Eq. 1.41 that normalizes the square of the amplitude is

given by

A =

(
21−N

πn!m!

)1/2

, (1.42)

and Hm and Hn are Hermite polynomials with (positive) integer indices m
and n. Hermite-Gauss modes are often denoted as HGm,n. The order of the
mode is given by

N = n+m. (1.43)

It is illustrative to see the expressions for the lowest-order Hermite
polynomials Hm(v):

H0(v) = 1 (1.44)

H1(v) = 2v (1.45)

H2(v) = 4v2 − 2 (1.46)

H3(v) = 8x3 − 12x (1.47)
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Figure 1.7. Graph of the irradiance of the lowest-order Hermite Gauss
modes.

The product of the Hermite polynomials and the Gaussian term, in Eq. 1.41,
result in the beam profiles shown in Fig. 1.7. Note that the zero-order

(N = 0) is the fundamental Gaussian mode. The indices m and n are also the

number of zeros of the mode in the x and y coordinates, respectively. Thus,
one can easily understand and predict the general shape of the mode from

the values of m and n. One can also see that the size of the mode increases

with the order. In laser resonators, modes of the same order are degenerate.
Often laser resonators have an aperture within the laser cavity to eliminate

these (unwanted) high order modes and lase only in the fundamental mode.

The phase terms of the mode are independent of the transverse
coordinates. They are the same as those in Eq. 1.18 except for the Gouy

phase, which in Eq. 1.41 has a new factor [9]:

ϕ(z) = (N + 1) tan−1(z/zR). (1.48)

If a beam is a superposition of modes, then propagation introduces a relative
Gouy phase between the modes. Such a phase will affect the shape of the

composite mode as the light propagates, especially if it is focused by lenses.
Not all the points in the mode have the same phase, because the Hermite

functions have positive and negative values. For example, inspection of the
HG10 mode shows a node at x = 0, which correlates with H1 in Eq. 1.45.
Because H1 has different sign for x > 0 and x < 0, the two lobes of HG10 are
180◦ out of phase. In fact, this is true with all adjacent lobes in Fig. 1.7.
Figure 1.8. shows the amplitudes for two HG modes, illustrating the phase

difference between adjacent lobes.

Hermite-Gaussian modes are best produced directly from an open-cavity
laser by inserting fine crossed wires within the cavity. The laser modes that

are generated will have nodes along the wires because scattering losses will



March 10, 2016 10:2 PSP Book - 9in x 6in GalvezchapterMain

Gaussian beams 13

Figure 1.8. Amplitude of Hermite-Gauss modes HG10 and HG20.

discourage all other modes. This is easily done in any type of open-frame
laser, such as gas lasers. The advantage of the method is that it is very

efficient. The disadvantage is that higher-order modes do not lase with as

high gain as low-order modes, so as the order of the generated mode goes up,
the laser power in that mode goes down. Laser cavities with asymmetric

frames or astigmatic gain regions can also be used to create mode

superpositions and tailor a particular beam shape. Hermite-Gauss modes are
of interest mostly for their connection to Laguerre-Gauss modes (described

next) because the latter can be expressed as superpositions of Hermite-Gauss

modes.

1.2.3 Laguerre-Gaussian beams

In the previous section we discussed a family of modes that appeared as
solutions of the paraxial wave equation in Cartesian coordinates. If we choose

a different coordinate system, such as cylindrical coordinates, we will get a

new set of solutions. These solutions give rise to Laguerre-Gauss modes.
These modes have very interesting properties, so we will subdivide this

section into several parts.

1.2.3.1 Fundamentals

A first step is to set up the paraxial wave equation in cylindrical coordinates,
and then allow the solutions to have independent solutions in terms of the

transverse coordinates r = (x2 + y2)1/2 (distance from the origin) and

φ = tan−1(y/x), the angle about the transverse horizontal axis (x). The
solution of the resulting equation is given by [2]

Up,`(r, θ, z) =
A

w

(√
2r

w

)|`|
L
|`|
p

(
2r2

w2

)
e−r

2/w2
eikr

2/[2R]ei`φe−iϕ, (1.49)

where p and ` are integer indices, with p being only positive, and so the order
of the mode is given by

N = 2p+ |`|. (1.50)
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The normalization constant is given by

A = p!

(
2

πp!(|`|+ p)!

)1/2

. (1.51)

The solution contains the associated Laguerre function L`p that depend only

on r. The lowest-order associated Laguerre functions are given by

L
|`|
0 (v) = 1 (1.52)

L
|`|
1 (v) = 1 + |`| − v (1.53)

L
|`|
2 (v) =

1

2

[
v2 − 2(|`|+ 2) + (|`|+ 1)(|`|+ 2)

]
(1.54)

One of the main characteristics of the solution is that the amplitude has a

pure radial dependence, so that the intensity profile of the beams consists of
one or more rings, as shown in Fig. 1.9. Indeed, the index p specifies the

Figure 1.9. Graph of the irradiance of the lowest-order Laguerre Gauss
modes.

number of radial nodes. Because of the term of the form r|`|, only when ` = 0
there is a central maximum. For other values of ` the central spot is dark.
When ` 6= 0 and p = 0 the beams have a characteristic single-ringed
“doughnut” shape, with the radius of the doughnut given by

r` =

√
|`|
2
w, (1.55)

and a maximum amplitude at that radius that decreases monotonically with

increasing |`|. The dark interior of Laguerre-Gauss modes also makes them
amenable to imaging. In particular, it has been used in STED microscopy for

high-resolution imaging [50, 28].

The most interesting term of Eq. 1.49 is the one where the phase varies
as `φ. It specifies that the phase of the wave that depends on the angular
coordinate φ, and which winds `-times-2π per revolution about the center of
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the beam. The constant ` is known as the topological charge. This is
illustrated in in the color-coded phase maps of the modes, shown Fig. 1.10.

The center of each of the phase plots has a phase singularity or optical

vortex. Since that point has all the phases, then the light interferes with itself

Figure 1.10. False-color maps of the phase of the first- and second-order
Laguerre-Gauss modes p = 0.

destructively, explaining the dark spot at the center of the beams. This
aspect of Laguerre-Gauss modes has been the subject of much research [1].

The central spot containing the optical vortex is particularly sensitive to

perturbations, so that when the beam is not in a pure mode but in a
superposition, it is likely that the exact position of the optical vortex will be

affected. When |`| > 1, any perturbation will split the vortex of charge ` into

` singly charged vortices [6].

1.2.3.2 Interference

There are other phase terms in the solution of Eq. 1.49, such as the curvature
of the wavefront and the Gouy phase. The latter now follows the definition of

Eq. 1.48, but with the order N given by Eq. 1.50. In this way, Hermite-Gauss
and Laguerre-Gauss modes are very similar. If we interfere Laguerre-Gauss
beams, one gets patterns such as those shown in Fig. 1.11. Frames (a) and

(d) show respectively the modeled and measured the interference patterns for

the case of two modes with ` = 1 and ` = 0 interfering collinearly. As can be
seen, it is an asymmetric pattern. For higher values of ` the pattern consists

of |`| maxima symmetrically distributed about the center of the beam. If the
relative phase between the modes is varied, the pattern rotates about the
center of the beam. We can understand this the following way: the mode has

a phase

ψ` = `φ (1.56)

while the other mode has a constant phase ψ0. We get constructive
interference when

ψ` − ψ0 = 2πn, (1.57)
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Figure 1.11. Modeled interferograms of ` = 1 and ` = 0 modes inter-
fering (a) collinearly, and (b) at an angle; and (c) of ` = 2 and ` = 0
interfering at an angle; measured interference pattern of ` = 1 and ` = 0
beams (d) collinearly (taken by P. Crawford), and (e) at an angle (taken
by K. Beach); and (f) collinear interference of ` = 1 with an expanded
` = 0 beam (taken by H. Sztul).

where n is an integer. This will occur at angles

φn =
2πn+ ψ0

`
. (1.58)

If the phase of the zero-order mode changes, then the angle at which the n-th

maximum occurs will rotate about the center of the beam. Note that for
higher values of ` the pattern as a whole will rotate at a slower rate. If we

change the sign of ` the pattern will rotate in the opposite sense for the same
change in the relative phase.

Non-collinear interference gives rise to peculiar fringe patterns. Because

of the optical vortex in these modes, which is a phase dislocation, the fringe
interference pattern has a distinctive forked pattern. If the zero order mode

forms an angle β, then its phase varies along the plane that contains both

beams. Let us call that the coordinate x, and assume that the initial phase is
ψ0 at x = 0 The phase difference between the two modes on a screen in the

x-y plane centered on the beam’s intersection is given by [7]

∆ψ = ` tan−1
( y
x

)
−

2π

λ
x sinβ − ψ0 (1.59)

where we have expressed the variable φ in terms of the x and y coordinates.

The graph of ∆ψ = 2πn gives rise to a forked pattern. The number of tines

in the fork is the value of |`|+ 1, as shown in Fig. 1.11.(b) and (c) where the
interference pattern has been modeled for the cases ` = 1 and ` = 2,

respectively. Thus, the interference pattern can be used to diagnose the

topological charge of the beam. Figure 1.11.(e) shows the measured forked
pattern. If the charge is negative, then the fork points in the opposite

direction (down for the cases of the figure).
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If the ` = 0 beam is collinear but has a radius of curvature that is
different broom the one of the beam carrying the optical vortex, then the

phase difference between the two modes is

∆ψ = `φ+
2πr2

λ

1

2R0
− ψ0, (1.60)

where we have assumed for simplicity that R` ∼ ∞. If we require ∆ψ = 2πn
we get a relation between r and φ corresponding to `-intertwined spirals.

Figure 1.11.(f) shows the measured pattern for the case with ` = 1. As ψ0 is

changed the spiral pattern rotates.

1.2.3.3 Angular momentum

If we ignore phase due to the curvature of the wavefront and the Gouy phase,

then he phase of the wave is given by the z and φ dependencies, or

ψ(r, φ, z) = kz + `φ. (1.61)

This phase function follows the form of a helix of pitch λ. Points of equal
phase, known as the wavefront of the beam, make `-intertwined helices. This

is shown in Fig. 1.12. for the cases with ` = +1 and ` = +2. The angular

phase of the mode brings with it a new property of light beams: orbital
angular momentum [2]. Fundamental light beams are known to carry linear

momentum associated to their planar wavefront. Helical beams, such as

Laguerre-Gauss with ` 6= 0 carry angular momentum. This angular
momentum depends on the rate of change of the phase with the angular

coordinate, so it increases with |`|.

Figure 1.12. A pictorial view of the wavefronts of beams with ` = +1
(left) and ` = +2 (right).

Each photon in a Laguerre-Gauss mode carries an angular momentum [2]

L = `~, (1.62)

where ~ = h/2π, with h being Plank’s constant. Because the waveform is

tilted on one side of the beam and tilted the other way on the opposite side,
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Laguerre-Gauss beams can exert torques on objects, especially irregular ones.
To a fully absorptive particle the torque is given by [29, 41]

τ =
`P

ω
, (1.63)

where P is the absorbed power and ω is the angular frequency of the light. A

sphere will rotate with an angular frequency given by

Ω =
τ

8πηa3
. (1.64)

Figures 1.13.(a)-(c) show the rotation of a partially absorptive sphere effected

by light in an LG2
0 mode. The rotation of the irregular features of the sphere

demonstrates its rotation.

Figure 1.13. (a)-(c) Images of a 10-µm sphere (labeled) rotated in place
by light with ` = 2 (taken by N. Zehlev); (d)-(f) images of latex spheres
moved along the ring of light with ` = 20 (courtesy of M.J. Padgett).
The arrow marks the same sphere.

When the objects are transparent but irregular, say cylindrical, the

asymmetry of the objects changes the mode, as seen in the next section,
which involves an exchange of angular momentum between the light and the

object. In that case too the object will experience a torque. In addition to
rotating objects in place, when the objects are small they get trapped by the
intensity gradient along the ring of the mode, and because the wavefront is

slanted along the ring, the objects will move along it, as seen in

Figs. 1.13.(d)-(f).

1.2.4 Relations between mode families

Because Hermite-Gauss and Laguerre-Gauss functions each form a complete
set, any mode can be expressed as a superposition of modes of either set, and
in particular, the modes of one family can be decomposed into a
superposition of modes of the other family. Moreover, the modes of a given
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order N of one family have a decomposition in terms of a superposition of
modes of the same order in the other family [9].

The connection between first-order modes is very illustrative. According

to Eq. 1.41, the first-order Hermite-Gauss modes are given in abbreviated
form by

HG10 = B1x G W (1.65)

HG01 = B1y G W, , (1.66)

where

B1 =
2
√

2
√
πw2

(1.67)

is a constant,

G = e−r
2/w2

(1.68)

is the Gaussian envelope, and

W = e−ikr
2/(2R)−iϕ, (1.69)

is an overall phase term. In a similar way we can define the first-order
Laguerre-Gauss modes:

LG+1
0 = A1re

iφ G W (1.70)

LG−1
0 = A1re

−iφ G W (1.71)

where

A1 =
2

√
πw2

(1.72)

is the normalization constant.
Notice that A1 = B1/

√
2. The Laguerre-Gauss modes can also be

expressed as

LG±1
0 = A1(x± iy) G W (1.73)

or equivalently,

LG±1
0 =

1
√

2
(HG10 ± iHG01), (1.74)

The previous equation means that the superposition of the two first-order
Hermite-Gauss modes with a relative phase of π/2 give rise to a first-order

Laguerre-Gauss mode. This type of relation can be easily realized in the
laboratory, but more interestingly, it can be used, in combination with the
Gouy phase, to convert first order modes of one family to the other. To
understand this we first have to realize a relation between rotated

Hermite-Gauss modes:

HG10(θ) = HG10 cos θ +HG01 sin θ, (1.75)

where θ is the angle that mode HG10 is rotated. In particular, when θ = π/4
one gets

HG10(π/4) =
1
√

2
(HG10 +HG01) . (1.76)
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That is, the superposition of the two Hermite-Gauss modes in phase gives
rise to the mode rotated by π/4. Note the similarity between Eqs 1.74 and

1.76. If we have a way to introduce a phase of π/2 between the two

Hermite-Gauss modes we convert a rotated Hermite-Gauss mode into a
Laguerre-Gauss mode. This can actually be done with optical components

using the Gouy phase and cylindrical lenses; a device known as a mode

converter [9]. The idea is that a cylindrical lens introduces a Gouy phase in
one dimension but not the other, so modes aligned with the axis of the

cylindrical lens will experience a Gouy phase that is different than the mode

aligned with the axis perpendicular to the cylindrical lens. This is shown in
Fig. 1.14. The combination of two spherical and two cylindrical lenses results

in creating a phase of π/2 between the modes parallel and orthogonal to the

cylindrical axes. By inputting a mode oriented at π/4, per Eq. 1.76, it is
decomposed into the modes parallel and perpendicular to the astigmatic axis

of the mode converter. The latter introduces a π/2 phase between them via
the Gouy phase. The resulting mode is then a Laguerre-Gauss mode.

Figure 1.14. A π/2 mode converter.

Hermite-Gauss modes do not carry orbital angular momentum. Because

the mode converter converts a Hermite-Gauss mode into a Laguerre-Gauss

mode, the light exchanges angular momentum with the apparatus. In the
case of optical tweezers, irregular objects can exchange angular momentum

with the light, and thus receive a recoil torque.

The two first-order Hermite-Gauss modes can also be put in terms of the
two first-order Laguerre-Gauss modes:

HG10 =
1
√

2
(LG+1

0 + LG−1
0 ) (1.77)

HG01 =
−i
√

2
(LG+1

0 − LG−1
0 ). (1.78)

The zero orders are the same for the two families: LG0
0 = HG00. These

relations between families can be extended to higher orders [9]. For example,

LG+2
0 =

1

2
HG02 −

i
√

2
HG11 −

1

2
HG20 (1.79)

LG−2
0 =

1

2
HG02 +

i
√

2
HG11 −

1

2
HG20 (1.80)

LG0
1 =

1

2
HG02 +

1

2
HG20 (1.81)

The converse relationship can be deduced from the previous. One final case
of importance is that of the cosine form of the Laguerre-Gauss mode:

LGc|`| =
1
√

2
(LG`0 + LG−`0 ) (1.82)
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which is a symmetric mode with 2|`| lobes symmetrically arranged about the
center of the beam. A relative phase between the two only rotates the

pattern.

Finally, there exist a distinct but related family of modes, known as
Ince-Gaussian beams [5]. They provide a continuous transition between

Laguerre-Gauss and Hermite-Gauss modes.

1.2.5 Laboratory methods of production

Low-order Hermite-Gauss modes can be produced directly by lasers bearing

apertures or obstacles to encourage maximum gain for a particular mode and

too much loss for all the other modes [9]. This is not so easy for
Laguerre-Gauss modes because it is not straightforward to enhance one

topological charge ` and discourage the mode with −`. Thus, Laguerre-Gauss

modes are mostly produced externally via mode transformation. In the
previous section we mentioned a method that uses mode converters to

transform Hermite-Gauss modes into Laguerre-Gauss modes. That method is

a good one for a few set of low-order modes.

1.2.5.1 Spiral phase plate

Higher-order Laguerre-Gauss modes can be produceed via spiral phase

plates, sometimes called vortex lenses. These devices are also available

commercially. They consist of a glass substrate that has a dielectric deposited
over it in the shape of a helical ramp. This ramp retards the light through its

angle-dependent thickness, shown schematically in Fig. 1.15.(a). The step is
of a height that leads to delaying the wave from either side of the step by an

integer number of wavelengths. In particular, If the medium of the ramp has

an index of refraction n, and the step has a height h, then the at either side
of the step the light acquires a phase φ+ = 2πnh/λ and φ− = 2πh/λ

(assuming air is the surrounding medium). For a Laguerre-Gauss mode of

order ` the difference in phase at either side of the step is φ+ − φ− = 2π`.
Therefore, the height of the step is

h =
`λ

n− 1
. (1.83)

There are experimental challenges to creating the sharpest step, but the
greatest challenge is to produce a pure mode. Let us assume that the phase
plate has no imperfections, then sending a Gaussian beam through it will
produce a mode with topological charge `, but not in a p = 0 mode, but in a
superposition

LG`sup =
∞∑
p=0

cpLG`p (1.84)

where cp is a coefficient that will be greatest for p = 0 and decrease in
magnitude for higher values of p. The resulting mode may even resemble a
singly-ringed p = 0 mode, but its radius will not correspond to what one may
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Figure 1.15. Diffractive elements to produce Laguerre-Gauss modes:
(a) spiral phase plate; (b) binary forked grating; (c) phase pattern for
producing ` = 1 modes with an SLM on reflection or transmission; (d)
amplitude-modulated phase-blazed pattern for producing ` = 1 modes
with an SLM by diffraction.

predict via the equations outlined in sections above. The reason is quite

simple: the light going through the center of the spiral phase plate has all
phases, so it undergoes destructive interference. A few wavelengths away past

the plate, the light beam already has a dark spot, but the light that initially

was at the center of the input mode has to go somewhere, so diffraction takes
care of it. The final mode is a multi-ringed mode with topological charge `.

In many applications this is still acceptable, but in applications where one

requires a pure mode, then the light that enters the phase plate has to
already have the proper ringed-shaped intensity. That is, for producing the

purest mode we need to apply phase and amplitude modulation.

The analogous device for a Hermite-Gauss mode is a stepped phase plate.
The adjacent lobes of all Hermite-Gauss modes are π out of phase, so a plate

that shifts the phase by the right amount can also be used. In first-order

modes where the there are only two lobes, a simple piece of glass of the
proper thickness, or tilted for fine adjustment, can be used to generate them

from an incoming fundamental Gaussian mode. The method still brings the
diffractive effects as with the spiral phase plate: the lack of amplitude

modulation creates additional lobes.

1.2.5.2 Holographic diffraction

By far the most efficient and versatile method of producing high-order modes

is through the use of diffractive optical elements. These come in two forms:

passive and active. Passive gratings can be holographic, engraved, or binary.
Active ones can use liquid-crystal-based electronic devices, such as a spatial

light modulator (SLM) to dial the desired pattern on demand.
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The simplest diffractive device is the binary grating, an amplitude
grating that either blocks or transmits light. It is generated simply by taking

a black and white photograph of the diffraction pattern and using the

developed negative as the diffraction grating [30]. Figure1.15.(b) shows an
example of a binary grating pattern with a dislocation charge q = 1.

Diffracted orders will have a topological charge that increases with the order.

The incident beam can also have a topological charge `inc. In general the
m-th diffractive order will have a topological charge.

`diff = `inc +mq. (1.85)

The most important problem of the binary grating is its efficiency. It is

partially opaque and the diffraction efficiency is low. Despite this, many early
research on complex light problems were done using this method. A better

approach is to use a phase-blazed grating. For a passive device, this requires

it to be holographic [36]. The photographic diffractive element is challenging
to fabricate. The easy alternative today is provided by a modern electro-optic

device brought in by the computer display industry: the SLM. This device

uses a liquid crystal medium to act as a pixelated birefringent device,
imparting an electronically addressable space-variant retardance on the light

that passes through it. Thus, these devices allow one to dial-in the desired

light mode by phase sculpturing it. They can also be highly efficient. They
can be used in two distinct modes: on reflection/transmission, and on

diffraction. The gray-scale encoded pattern for the former is shown in
Fig. 1.15.(c). It is the pattern that gets programmed onto the SLM, and

where the gray level becomes a phase shift imparted onto the light, and

where white is, say, phase zero and black is phase 2π. The pattern of the
figure was generated by encoding in gray scale the phase of Eq. 1.60

modulo-2π, with R =∞, ` = 1, ψ0 = 0 and r and φ specifying SLM pixels.

This is the electronic form of the spiral phase plate, where the phase delay is
imparted by the birefringence of the SLM instead of a pathl through a

refractive medium of varying thickness.

The spiral patterns encoded onto the SLM have the same shortcomings of
the spiral phase plate. The alternative is to generate the modes on
diffraction. To resolve the problem of efficiency, the pattern of the grating is

blazed, and to resolve the problem of mode purity, the grating is amplitude
modulated [13]. An example of such a pattern is shown in Fig. 1.15. for the

case of ` = 1. In this case, Eq. 1.59 was used, modulo-2π, and multiplied by a
modulation factor related to the shape of the mode. The combination of

amplitude phase modulation allows one to engineer a pure mode. The SLM

has other advantages: the phase can also be manipulated to include
deliberate mode superpositions and to simulate other optical elements such

as lenses and astigmatic elements [34].

1.3 Non-Diffracting Optical Beams

The previous sections were devoted to beams of light that are solutions of the
wave equation, and which suffer from diffraction: as the beam propagates,
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they evolve by expanding and phase-shifting via the Gouy phase. New and
distinct types of beams have been studied and developed that, through a

finite region of space, preserve their size and shape unaltered. That is, beams

that temporarily do not diffract. Some may even say that they are a
3-dimensional interference pattern, but one that remains intact for a design

distance. We also saw that the concept of a pure mode is meaningful within a

mathematical framework, because a pure mode in one family, say
Laguerre-Gauss, is a superposition (and consequently an interference beam)

of pure modes of another family, such as Hermite-Gauss. Even a fundamental

Gaussian beam can be thought of an infinite superposition of plane waves.
The case of non-diffracting light beams is fascinating for its simplicity and

elegance, and for their unique properties. In this section we will discuss two

distinct types of non-diffractive beams: Bessel beams and Airy beams. In
both cases, the ideal function is of infinite extent, as are plane waves, but

implementations of truncated functions still show the same ideal properties
for finite and but not insignificant regions of space.

1.3.1 Bessel Beams

The best way to understand Bessel beams is by starting with how they can

be made, shown in Fig. 1.16.(a). A beam of light with a planar wavefront is

incident on an axicon. This is a conical optical element: a prism of revolution.
It is flat on one side (facing the incoming light) and conical on the other side.

It is normally characterized by its apex or opening angle α. Figure 1.16.(a)

shows a section of the axicon that includes its axis; a view where the axicon
looks like a prism. A more convenient angle is base angle, shown in the

figure, and related to the apex angle by

γ = π/2− α/2, (1.86)

If the incoming rays are parallel to the axis, they are not refracted by the first

surface. Refraction at the second surface yields, via Snell’s law, the relation

n sin γ = sin(θ + γ), (1.87)

where θ is the angle that the refracted rays form with the z-axis, and n is the
index of refraction. Incoming rays above the axis are refracted downward,

and similarly, incoming rays the rays below the axis are refracted upward.

This is of course the description of just the rays contained in the plane of the
figure. All the refracted rays of a given input impact parameter w0 (distance
from the axis) form a three-dimensional cone after the axicon. For small
angles, the refracted angle is given by

θ = (n− 1)γ. (1.88)

The group of rays from the top overlaps with the ones from the bottom over

a distance

zmax '
w0

θ
. (1.89)

This quantity is also the depth of focus of the beam.
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Figure 1.16. Methods of production of Bessel beams: (a) with an axicon
of base angle γ; and (b) with an annular slit of diameter d, and a lens
of focal length f .

The beam that results can be thought of being made of a superposition
of plane waves that have a wave number k forming an angle θ with the axis.

These waves have a longitudinal component

kz = k cos θ (1.90)

and a radial (transverse) component

kr = k sin θ. (1.91)

A solution for the electric field within the region of overlap is [21]

E(r, φ, z) = A0e
ikzzJ0(krr) (1.92)

where A0 is a constant, the second term is the phase propagator associated

with a plane wave traveling along the z-axis, and J0(krr) is the Bessel

function of order 0. Notice that the magnitude of the mode depends only on
r, and not at all on z. It means that in the region where the rays overlap, the

magnitude of the field in the transverse plane remains constant. Thus, the
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width of the beam does not change throughout the overlap region. For this
reason, these beams are also known as non-diffracting. Figure 1.17. shows the

intensity of the transverse profile. Note that a large fraction of the energy is

concentrated in the central maximum of radius

r0 =
2.405

r4
, (1.93)

which is the first zero of the Bessel function. For example, a glass axicon with

a base angle γ = 2.25◦ yields θ = 0.022 rad, or zmax = 46w0. If w0 = 7.5 mm,

then zmax ∼ 340 mm. The radius of the central maximum for λ ∼ 600 nm is
10 µm. A Gausian beam with a waist of the same value will expand due to

diffraction and have a half-width of 6.5 mm at a distance z = zmax. This

Bessel beam has huge depth of focus compared to that of the Gaussian beam:
2zR = 1 mm.

Figure 1.17. Image of the transverse intensity of a zero-order Bessel
mode and a graph of the zero-order function on an axis crossing the
center of the mode.

Another simpler method of production of Bessel beams is shown in
Fig. 1.16.(b) [22]. The beam is produced by a ring aperture and a lens. The

ring has a diameter d and an aperture width ∆d. Due to single-slit

diffraction, the beam expands further after the ring. If the lens is placed a
focal length f away from the aperture, it needs to have a minimum radius

R =
d

2
+
λf

∆d
. (1.94)

The second term accounts for the slit diffraction of the light up to the first

minimum. The non-diffractive distance for this case is (for small angles)

zmax =
R

θ
, (1.95)

and where

θ =
d

2f
. (1.96)

The method, although inefficient (because most of the incoming light is
blocked), is simple and inexpensive. To produce a Bessel mode with the same
θ and zmax as the previous example, would require a ringed aperture with a
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diameter of 13.2 mm, and a lens of 300 mm focal length with a 15-mm
diameter. One can also understand this method of production in terms of

Fourier analysis: the Bessel mode is the Fourier transform of the ring, a

transform effected by the lens. Bessel beams can also be produced
diffractively using either holograms [51], or spatial light modulators [18].

Beyond zmax the mode disappears, as there is no longer beam overlap or

interference. Because these can be thin and non-expanding, they are
particularly suited for imaging via scanning light-sheet microscopy.[23, 44]

Bessel beams are “self healing” [38]. That is, an obstacle placed at a point

along the beam does not cast a lasting shadow. Using simple geometry, we
get that when a Bessel beam encounters an object of transverse side a, the

mode repairs itself after a distance

zrep =
a

2θ
. (1.97)

The explanation is simple: the mode is produced by plane waves (rays)

traveling at oblique angles, as shown in Fig. 1.16. Beyond zrep the rays no

longer hit the object, and so they recreate the beam as if the object was not
there. In actual implementations there are deviations from the ideal modes

described above, which can yield a z-dependent amplitude A0 and other
phase terms that may vary with z and r [35]. However, the pattern retains its

constant Bessel shape as a function of z.

A Bessel beam with an azimuthal phase can be generated diffractively
[52, 18], by using a high-order Laguerre-Gauss beam as input to an axicon

[3], or by applying a phase delay around the aperture of the ring [53]. In this

case the Bessel mode is given by

E` = A0e
ikzzei`φJ|`|(krr), (1.98)

where now the Bessel function is a high-order one, with the order given by `,
the topological charge. The center will no longer be dark because it will carry

an optical vortex. Other solutions to the wave equation yield non-diffracting

solutions include Mathieu beams, which are elliptical realizations of Bessel
beams [16].

1.3.2 Airy Beams

The Airy function is a one-dimensional function that is asymmetric about its
coordinate, say x, which is oscillatory for x < 0 (extending out to infinity)
and decaying exponentially for x > 0. It is a solution of a differential
equation that appears in several physical situations, and especially in optics,
around caustics [10]. In our case, implementations have involved a

two-dimensional function that is the product of two one-dimensional Airy
functions in orthogonal directions. If for now we concentrate on one

direction, the Airy function appears as a solution of a paraxial
one-dimensional wave equation [46], similar to Eq. 1.7:

∂2U

∂x2
+ 2ik

∂U

∂z
= 0, (1.99)
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where k = 2π/λ. For z = 0 the solution U(x, z) is simply the Airy function

U(x, 0) = Ai

(
x

x0

)
, (1.100)

where x0 is a scale factor. For z > 0 the solution is:

U(x, z) = Ai

(
x

x0
−

z2

4k2x4
0

)
ei[xz/(2kx

3
0)−z3/(12k3x60)]. (1.101)

Note that the amplitude of the solution remains intact: only its argument

changes, varying quadratically with z. That is, the pattern curves toward
x > 0 as it propagates. More precisely, the beam describes a parabolic

trajectory of the form

x =
z2

2k2x4
0

. (1.102)

This motion is often referred as “acceleration,” although the light does not

follow a curved trajectory. It is the superposition (interference pattern) that

curves. This trajectory follows the momentum which tilts the mode further
as it propagates [48]. This one-transverse-dimensional version of the Airy

beam has applications in light-sheet microscopy, producing a continuous

sheet of non-diffracting light,[54] and at the same time relieving the need to
scan the beam, as done in other forms of the technique.[44, 23]

A realization of this beam is recreated by truncating the function at the
input (z = 0). It is also recreated in 2 dimensions, which results in a product

of Airy functions of the x and y coordinates. However, the main features

remain the same. The complete implementation has the modified form [14]

U(x, y, z) = Ai

(
x

x0
−

z2

4k2x4
0

−
iaz

kx0

)
Ai

(
y

y0
−

z2

4k2y4
0

−
iaz

ky0

)
×

eax/x0−az
2/(2k2x40)ei[(a

2+x/x0)z/(2kx20)−z3/(12k3x60)]×

eay/y0−az
2/(2k2y40)ei[(a

2+y/y0)z/(2ky20)−z3/(12k3y60)]

(1.103)

where 0 < a < 1, and where 1/a is related to the transverse extent to the

beam, similarly to the role of w for a Gaussian beam. There are two types of

exponentials for each coordinate. The real exponentials produce an
attenuation of the oscillatory part of the Airy beam in each dimension, x and
y. The imaginary exponentials add coordinate-dependent phase factors. The

latter result is the wavefront leading to the curvature of the beam.
Figure 1.18. shows three ways to view a two-transverse-dimension Airy

beam. In Fig. 1.18.(b) we see the transverse image of the mode. The lobes

correspond to the oscillations of the Airy function along the two coordinates.
They show clearly the asymmetry of the function. The intensity as a function
of x for y = 0 and z = 0 is shown in Fig. 1.18.(a). A different view is shown
in Fig. 1.18.(c), which shows a contour-type graph of the intensity as a
function of x and z for y = 0. The curvature of the graph clearly shows the

acceleration of the beam. This feature appears due to the superposition of
oblique plane waves, similar to the case of Bessel beams. For that reason,

Airy beams also exhibit the self healing effect.
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Figure 1.18. Airy modes: (a) Intensity along the transverse coordinate
x; (b) gray scale graph of the intensity in the transverse plane x− y; (c)
gray scale graph of the transverse intensity along axes x and z for a one
dimensional Airy beam.

1.4 Beams with Space-Variant Polarization

Previous sections covered scalar beams, where every point in the beam had
the same polarization. That is, the vectorial part of the beam is the same for

all points. Here we discuss beams of light where the state of polarization is

not constant throughout the beam. We address these types of beams in three
sections. A first section gives a brief introduction to polarization of light, and

the following sections present two types of beams: vector and Poincaré beams.

1.4.1 Polarization

Electromagnetic waves consist of transverse oscillations of electric and

magnetic fields,
−→
E and

−→
B , respectively. The two vectors are orthogonal to

each other, and their magnitudes are related by

E = cB, (1.104)

Thus, it is convenient to express the light only in terms of the electric field,

with the understanding that the magnetic part is proportional to it and
orthogonal in direction. Another reason to consider is that matter normally

interacts more strongly with the electric field component of the light.

Although not discussed here, there are situations where the magnetic field
and its interactions play an important role.

In a plane-wave description of the light, the electric field of a propagating
electromagnetic wave oscillates linearly in the plane that is transverse to the
propagation. In linear polarization, the electric field oscillates in a single

plane that contains the propagation direction. If we denote the state of linear
polarization along the x-direction by êx, and similarly, for the linear

polarization along y-direction by êy , then a general expression for the electric
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field is a linear superposition of these two components [42]

−→
E = E0

(
cosα êx + sinα e−i2δ êy

)
, (1.105)

where α and δ are angular variables that specify the relative amplitude and

phase between the two components. When 2δ 6= 0, π the polarization is in
general elliptical. That is, the tip of the electric field describes an ellipse in

the transverse plane. The orientation of the semi major axis and its relation

to the semi minor axis are non-trivially related to α and δ. For this reason we
take a different approach to represent the fields.

If 2δ = ±π/2 and α = π/4, the linear states are of the same magnitude

but out of phase by π/2, and the electric field rotates, with the tip of the
vector describing a circle. This is known as circular polarization. Depending

on whether the phase is positive or negative, the electric field rotates in one

sense or the other, and so we call right and left circular polarization when the
electric field rotates clockwise and counter clockwise, respectively, as a

function of time in a given transverse plane when we are looking into the

beam of light. The states of right (R) and left (L) circular polarization can
be described in terms of the linear states as:

êR =
1
√

2
(êx − iêy) (1.106)

and

êL =
1
√

2
(êx + iêy), (1.107)

respectively. The complex factor is i = exp(iπ/2) encodes the phase between

the two components. Because êR and êL are orthogonal, we can express a
general state of polarization in terms of them:

ê = cosχ êR + sinχ e−i2θ êL, (1.108)

This state represents an ellipse with an ellipticity [17]

ε = tan(π/4− χ) = ±
b

a
, (1.109)

where b and a are the semi-minor and semi-major axes of the ellipse,
respectively; and an orientation of the semi major axis θ. That is, in this

representation the ratio of amplitudes of the two components determines the
ellipticity and their relative phase specifies the orientation.

The Poincaré sphere of Fig. 1.19. is a convenient geometrical construction

that allows us to represent all the states of polarization by points on the
surface of the sphere [12]. Angle χ is half of the polar angle, and θ is half the

azimuthal angle, or longitude on the sphere, as shown in Fig. 1.19.

The north and south poles are the states of right and left circular
polarization, respectively. All the points along the equatorial line are states

of linear polarization with orientations that depend on the azimuth angle.

Points in between, in the northern and southern hemispheres are states of
elliptical polarization with right and left handedness, respectively. The full

array of states is shown in Fig. 1.20.
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Figure 1.19. Poincaré sphere for mapping all states of polarization.

Figure 1.20. Mapping of states of polarization via angles χ and θ.

1.4.2 Vector Beams

A class of these beams has only linear polarization, and are known as vector

beams or modes. The most important vector mode is the radial mode. It is a
mode where the state of polarization is linear but its orientation is radial, as

shown in Fig. 1.21.(a). This mode can be understood easily as a

superposition of two first-order Laguerre-Gauss modes in orthogonal states of
circular polarization:

U =
1
√

2
(LG+1

0 êR + LG−1
0 e−iγ êL), (1.110)

where γ is a phase. Replacing the expressions for the Laguerre-Gauss modes
of Eqs. 1.70 and 1.71 into Eq. 1.110, and setting γ = 0 gives

U =
1
√

2
A1rGW

(
e+iφêR + e−iφêL

)
, (1.111)



March 10, 2016 10:2 PSP Book - 9in x 6in GalvezchapterMain

32 Complex Light Beams

and where G and W are defined by Eqs. 1.68 and 1.69. Notice that the
amplitudes get factored out, so the state of polarization is linear. Inside the

parenthesis we have a superposition of circular states with a relative phase

between them. Thus, the orientation of the resulting linearly polarized state,
which is given by half the relative phase, depends only on the transverse

angle: θ = φ. The vector mode can also be produced by a superposition of

first-order Hermite Gauss modes:

U =
1
√

2
(HG10êx +HG01êy) . (1.112)

This can be understood by analyzing the x and y dependencies of the

expressions for the modes in Eqs. 1.65 and 1.66, and realizing that

x = r cosφ and y = r sinφ.
This state has been of interest because when focused by a lens, a

longitudinal electric field appears at the center of its waist [24]. This mode is

attractive because the waist is smaller than the one produced with uniform
polarization [20]. When γ 6= 0, the orientation of the polarization is given by

θ = φ+ γ/2. When γ = π, the orientation is perpendicular to the radial
dimension, or tangential, as shown in Fig. 1.21.(b).

Figure 1.21. Radial (a) and tangential (b) vector modes, where orien-
tation of the linear state of polarization varies across the beam profile,
denoted by lines. (c) pattern of fast axis orientations in a spatially-
variable half-wave plate that gives rise to vector modes.

These vector modes can be made in several ways. One is by direct
superposition of Laguerre-Gauss or Hermite-Gauss modes with an
interferometer (see Refs. [55] and [26] for a review of previous methods).
Another method involves using a specially designed optical element that acts

as a half wave plate with a fast axis orientation that varies with the angular
coordinate:

αfast−axis = qφ (1.113)

with q = 1/2. The pattern followed by the fast axes of the element is shown

in Fig. 1.21.(c). Linearly polarized light entering a half-wave plate gets its

orientation rotated by twice the angle that it forms with the fast axis. Thus,
this device rotates incoming uniformly polarized light by an amount that

depends on φ. The relative angle of the device as a whole with the incoming
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polarization specifies the orientation of the light at each angle. In the case of
Fig. 1.21.(c), incoming vertical polarization gives rise to radial polarization;

and incoming horizontal polarization gives rise to tangential polarization.

Devices like these can be made stitching standard birefringent materials cut
into pie sectors, with each pie sector having its fast axis forming an angle

given by Eq. 1.113 [20]. A continuously varying fast axis in a single element

has been designed using liquid crystals, and is already available
commercially. A particularly interesting device is known as a “q-plate” allows

the fast-axis angle of the device (q in Eq. 1.113) to be tunable [37]. This also

allows one to create beams like the ones discussed in the next section.
The superpositions of Eqs. 1.110 and 1.112 are non-separable. That is,

they are described by an equation that does not allow one to factor the

modes and polarizations separately. It is a type of superposition that gives
rise to modes with space-variant polarization. The range of distinct modes

that can be produced can be mapped onto geometrical representations [39],
allowing an investigation of the variety of modes that can be produced and

their underlying mathematical structure.

1.4.3 Poincaré Beams

When we do a superposition of spatial modes of different order and

polarization, we get a mode where both orientation and ellipticity vary from
point to point. To describe this in the simplest terms let us start with the

Laguerre-Gauss and circular polarization bases, similar to Eq. 1.110 but now

with the modes LG`0 and LG0
0. This yields

U =
1
√

2
(LG`0êR + LG0

0e
−iγ êL), (1.114)

The amplitude and phase of the two spatial modes do not have the same

values at each point, and so they will yield in general elliptical states at any
given point. If we use the expressions for each mode, we can rewrite

Eq. 1.114 as

U =
1
√

2
AGW

(
cosχ êR + sinχ e−iγ êL

)
, (1.115)

where now

χ = tan−1

(
A0

A`r`

)
(1.116)

and

θ = `φ/2 + γ/2, (1.117)

A is a constant and G and W are defined by Eqs. 1.68 and 1.69. Notice that

the relative amplitude of the two states of polarization depends only on the
radial coordinate, and the relative phase depends only on the angular

coordinate. Let us consider the case ` = +1. Since at r = 0 the amplitude of

LG+1
0 is 0, while that of LG0

0 is maximum, then at r = 0 the state of

polarization is left circular. As r increases, the amplitude of LG+1
0 increases

while the amplitude of LG0
0 decreases, and at a certain radius rv they will be
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equal and the polarization is linear. In the range 0 < r < rv the polarization
will be left-handed elliptical, with ellipticity that depends on r. For r > rv
the amplitude of LG+1

0 will be greater than that of LG0
0, and so the state of

polarization will be right-handed, and at r →∞ the polarization will be
right circular. The mode LG+1

0 has a phase that varies with φ whereas LG0
0

has a constant phase. Therefore, the relative phase at a point (r, φ) is φ+ γ,

and therefore the orientation of the elliptic-linear states is θ = φ/2 + γ/2. In
all, this new mode has an ellipticity that varies with radial distance and an

orientation that varies with φ. It contains a mapping of all the states on the

Poincaré sphere onto the transverse beam mode, and for that they are called
Poincaré beams. It yields the pattern of Fig. 1.22.(a). If we use ` = −1 mode,

we get the pattern of Fig. 1.22.(b). These two patterns are known as the

lemon and the star; names derived from an analysis of their topological
structure: line singularities [11, 19, 25], such as those found in

fingerprints[43].
We can make two types of changes to Eq. 1.114 and get yet other

polarization patterns. If we change the mode to ` = 2, we get a radial mode

but with an ellipticity that varies with r (see that Eq. 1.117 yields θ = φ as
in the radial vector mode). Conversely, we can change the set of states of

polarization used to get an asymmetric polarization pattern, as shown in

Fig. 1.22.(c) for the case of the linear x and y linear polarization states. This
pattern is also of interest because it has a polarization gradient across its

profile.

Figure 1.22. Lemon (a) and star (b) Poincaré modes obtained using
Laguerre Gauss modes respectvely with ` = 1 and ` = −1 in a state
of right-hand circular polarization in superposition with fundamental
mode in a state of left-hand circular polarization. (c) Same construction
as for (a) but using states of linear polarization instead of circular states.

These types of modes can be produced with various laboratory designs

that use superposition of collinear modes [27], or transmission through
optical elements with dislocations, such as the q-plates [15], solids with stress

birefringence [8] or optical fibers [31].
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1.5 Discussion and Conclusions

The control of amplitude, phase and polarization of light has yielded an

interesting set of optical beams presented in this chapter. They carry an
array of unique properties, such as optical vortices, angular momentum, self

reconstruction and vectorial dislocations, to name a few. They have already

been at the center of many applications, and hold promise of more. Although
these works have approached these beams from a classical perspective, their

properties and applications extend to the quantum-physical domain, where

they also provide settings for fundamental tests and applications. The field of
complex light is growing into a one that provides an array of optical tools for

research and applications. The present chapter presents an overview of what

has been done, with the promise that more is yet to come.
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