Alumni Newsletter - Fall 2005

Welcome

A few words from the Chair ... Bruce Selleck

The fall semester 2005 is well underway here in Hamilton and this issue of the alumni newsletter provides us with an opportunity to relate the latest news about the department and Colgate. These are exciting times for the department in that ground has just been broken for the new Robert Ho Interdisciplinary Science Center which will house Geology, Physics and Astronomy and Geography. We recently celebrated the 100th anniversary of Lathrop Hall, which has been the home of Colgate geology for all those years, but we are looking forward to our new digs with great anticipation. Charlie McClennen has been the overall faculty leader in the development of the Ho Center plans, and Rich April has been the departmental representative to the building committee. Robert Ho, a member of the class of 1956, has led the funding for the new building with a $25 million lead gift for this project that will total around $52 million. While we will all miss Lathrop's homey atmosphere and historic ambiance, the need for climate controlled lab environments for our latest equipment and the increasing demand for technologically sophisticated teaching labs and classrooms have really outstripped our current facilities.

We have welcomed a new faculty member to the department this fall - Martin Wong - who comes to us from the University of California at Santa Barbara. Martin is a Williams undergrad, so is familiar with the goals of a liberal arts college and the kinds of opportunities that we foster for our students. Martin is with us for two years as a replacement for Art Goldstein, now at the National Science Foundation in Washington, DC.

Our Cooper Lecture Series, funded with endowment income from the generous gift of G. Arthur Cooper, continues to allow us to attract high quality speakers to the department. We attempt to include some alumni among the Cooper invitees, as this allows our current students insight as to career paths once they leave Colgate. We are also fortunate to have support from the Malcolm and Sylvia Boyce Endowment which funds projects for faculty and students, including our special 'spring break' trips, which in recent years have taken groups to Death Valley, Hawaii and the Cascades. Our discretionary fund, made up of designated annual fund gifts from our alumni, allows us to support a variety of student-oriented events on-campus, and to deep in touch with alumni through mechanisms like this newsletter.

We hope to see you back at colgate sometime soon. There are usually geology-related events on Reunion Weekend, but we are always happy to see folks at any time when they visit campus.
Messages from the Faculty
Rich April

When Marc Arbeeny (class of ’78) stopped by my office this past summer, out of the blue, with his lovely, almost-college-age daughter in tow, he reminded me that he was in the first mineralogy class I ever taught at Colgate. What a fine class that was! Enrollees included Jay Ach, Ellen Campbell, Christine Collins, Kim Dalton, Don Eckelmann, Karen Fell, Robert Goldhammer, Kerry Inman, Hans Killingstad, Pierre LaCroix, Lisa LeClair, Billy Meyer, Sue McCarthy, Bruce Novich, Chris Redington, Maud Seaver, Jeff Trembly, and Mark Wagner, just to name a few. That was 1976, which means that this fall will mark the beginning of my 30th year at Colgate. Some of you have kept in touch; others are out there, somewhere, successful I'm sure. And, sadly, one member of this marvelous group, a brilliant student and geologist, is gone for good - Bob Goldhammer.

So, what do I have to say after almost 30 years in this department? It's been fun, enlightening and challenging, and I wouldn't trade these years for anything.

I've traveled a bit these past couple of years, while on sabbatical leave: Australia, Belgium, Israel, the Southwestern U.S., California - to study and learn more about the geology of these areas. I'm teaching a new CORE course on gemstones, so I've also been picking up quite a bit of information on the mining of gems, and the history, myths and legends surrounding these stones, especially the diamond. This summer I visited three of the important diamond centers of the world, Antwerp, Brugge and Tel Aviv. The diamond museums in these cities are quite interesting, and if you are ever traveling through these cities, I recommend a visit.

Research endeavors are keeping me busy. Along with three other Principal Investigators, I recently received a four-year NSF grant to study the effects of calcium depletion on Adirondack ecosystems. Acid deposition in the U.S. has been cut dramatically over the past two decades, primarily because of emission control regulations required by the Clean Air Act Amendments of 1990. The question now is whether regions that were severely impacted by this pollution over much of the 20th century can recover, and how do we measure this recovery. Measuring chemical recovery is pretty straightforward - design sampling strategies for soils, streams and lakes so that key parameters, such as pH, alkalinity, sulfate, nitrate, etc. can be monitored over time. But, how do we measure the biological recovery of ecosystems? This is a knotty problem, and that is what this research project is all about. By the way, Michele Hluchy, class of ’82, is one of the four PIs on this NSF grant. It's great to be able to work with Michele again.

I hope all of you are happy and healthy. Wishing you the best.

Rich
Greetings! I hope this newsletter finds all of you doing well. We've been keeping busy here at Colgate, as usual, as you no doubt can tell from the information in this newsletter, including plans for the new science building, hiring new faculty, teaching courses, the OC, and everything else.

I've never been keen writing about myself, so I'll tell you about the research students I've been fortunate to have joining me on various projects over the past few years. Last summer, with the help of the Freeman Foundation, several students and I traveled to Japan for three weeks to carry out a project focused on the volcanoes of Kyushu, the southernmost island of the Japanese mainland. We carried out fieldwork on 3 spectacular volcanoes, Aso, Sakurajima (which has ongoing Vulcanian eruptions, for those of you who are volcanically inclined), and Unzen, which erupted in the early 1990s. These samples became the basis of an honors project by Ashley Nagle ('05), who is attending Brown University for graduate studies this fall and who will be presenting her findings from this project at the American Geophysical Union meeting in San Francisco in December. As some of you know, I also teach a course on the advent of the atomic bomb, and some of the students on this trip were former members of this class. They focused on the role of terrain in the Battle of Okinawa during WWII, and on its importance in the ultimate decision to use the atomic bombs in 1945. We collected digital images and information about the geology and geography of Okinawa and Kyushu, and the students developed a series of activities that we've implemented in the atomic bomb course to illustrate the importance of terrain in battlefield strategy. Evan LeBon ('05), a geology minor who also graduated this year, presented his findings at the American Association for the Advancement of Science in Washington, DC; some of the course activities will be presented by major, Starr Waymack ('06) and Michael Carrington ('06, a history major) at another meeting this fall.

This year, Branden Christensen ('06) and I are embarking on a field expedition to study the magmatic evolution of Hekla volcano, in Iceland, long thought to be the gateway to hell in some myths, so it should be quite an interesting trip. We hope to present our results at AGU in the fall as well. In the meantime, I've been working on writing up the research findings of several other Colgate students who've done geochemical work with me, mostly on the Galápagos Islands, including Alison Koleszar, Susanna Blair, Leslie Reed, Nathan Rollins, Jay Barr, and Matt Lambert. (Alison, Susanna, and Jay are pursuing graduate degrees in geology as well at Brown, the University of Florida, and MIT, respectively).

I was also fortunate this year to participate in a workshop in Antarctica, in the Dry Valleys; it was a fascinating month and will hopefully lay the groundwork for more research in the area. In the meantime, however, we have to pack for Iceland and get those Antarctica samples running on the mass spectrometer, so I will wish you all best wishes and please stay in touch!
Di Keller

It's the end of a busy summer that included about 3 to 4 weeks of bushwhacking and soil pit digging in the Big Moose area of the Adirondacks, a two week trip to Alaska, and in between, helping summer research students learn sample preparation and analytical techniques back here at Colgate. Alaska always has great geology to enjoy, as well as wildlife and adventures like rafting and salmon fishing on the Kenai River or kayaking out of Valdez harbor with Sally Rothwell '84. The scenery is full of glaciers, their related topography and deposits, braided streams, avalanche scars and slumps, not to mention some fabulous coalified stumps and plant fossils. While hiking around Worthington glacier, we had the special experiences of finding an ice cave and also being able to look under the base of the glacier where it had pulled away from the ground surface. The blueness of the ice was striking. Soil sampling in the Adirondacks as part of Rich April's newly funded Acid Rain / Calcium Depletion Study also had me thinking of glaciers, although not quite as fondly, as I attempted to shovel, pickax and crowbar my way through the cobbles and boulders of the tills they left behind. Thankfully, as we all know from Chief, at least 'there were no bugs in the Adirondacks' (right!) and we managed to collect about 300 samples from those wonderful Adirondack spodosols with their distinct E horizons that I love so much. Working with Rich, Colgate biologists, Randy Fuller and Tim McCay, and Michele Hluchy '82 from Alfred University as well as the students involved in the study has been wonderful so far, and I'm looking forward to comparing data when we get it.

During the academic year, I still mostly teach labs, although this past Spring I also taught about five weeks of Environmental Geology for Amy Leventer while she was away doing climate change research in Antarctica. It was a lot of work but a good experience, and I still found time to do some skiing and to chase after the three new kittens that were born in my house in February. Their mother, a stray that I had taken in out of the cold, is back outside (although now spayed) but the kittens are staying with me and have been very busy 'redecorating' the house. Evidently shredded wallpaper is the newest trend in home decor. Who knew?

Amy Leventer

I continue to enjoy life here at Colgate, dividing my time between teaching and research. My teaching efforts are primarily focused on introductory level courses, such as Oceanography, Environmental Geology, Earth and Environmental Processes, and my core Scientific Perspectives course, Climate Change and Human History. My favorite, however, is time spent out west with the Geology Off Campus program; Dinosaur Ridge, the Moab Fault, and now, Golden Gate Canyon State Park (near Boulder) are all spectacularly beautiful places to teach and a great way to start each summer.
My research in Antarctica is now focused on the impact of modern day global change on this very sensitive system. In particular, I've been studying the northeastern Antarctic Peninsula where the 2002 collapse of the Larsen B ice shelf has made news headlines (and is featured in a Hollywood movie!). Our working group, which includes faculty and undergraduates from several schools in addition to many Colgate students, has shown that this recent collapse is unprecedented over the past 10,000 years. Global warming certainly is having a significant effect on Antarctica.

In addition to our paleoclimate work, our group has been lucky, with two fortuitous discoveries over the past two years. During our 2004 cruise, we discovered a small seamount that appears to have been active recently. And this past season, we discovered a seafloor chemotrophic ecosystem, with bacterial mats and big clams, beneath the collapsed Larsen B Ice Shelf. This cold seep community is the first to be found in Antarctica; its future is uncertain as debris from the ice shelf and organic material from the water column begin to bury it.

In my free time, I've been trying to introduce my family to geology - a week in Yosemite last summer and another week this summer in Moab! We also love spending time in the Adirondacks, up at Colgate's Camp on Saranac Lake.

Charlie McClennen

Over the last year the most rewarding and time consuming (1/2 to 3/4 time) activity has been to move the new Ho Interdisciplinary Science Center Building project forward. A commitment by Robert Ho, class of '56, for 25 million has enabled this project to move ahead rapidly as we look for the other half of the funding that will be needed. Working with faculty and staff from Geology, Geography, Biology, Physics and Astronomy, as well as Environmental Studies, we have a very exciting building designed with architects from the firm of Shepley Bulfinch Richardson and Abbott out of Boston. The integration of all the departmental and program needs including links to Olin and Wynn will transform the upper campus in the space between O'Connor, Wynn, Olin and the ALANA Cultural Center. Common and shared space lighted by many windows, some two stories high on the south side, as well as skylights, will promote the interaction of all the future inhabitants from the several departments and ENST Program. See Colgate's website for images and updates.

An open stairwell connecting the four floors should create a people friendly space with numerous study alcoves, glassed views into labs, and display cases. The expanded Geology Museum is in the creative conceptual design stage with continued emphasis on course teaching materials, New York State Geology, and fundamentals of geology for visitors. A 3-D Visualization Lab combines the functions of a planetarium, 360 degree dome projection capability with a 60 seat classroom. The outdoor rock garden
will include the fitting boulders of geologic interest. The greenhouse and tropical plant conservatory is situated logically on the southeast side providing research and teaching sections far better than the existing Olin facility which will be in the shadow of the new Ho Center most of the day. Because of the hill slope, parts of the building will be below grade making it appear two stories near the Coop, three between Olin and Wynn, and for on the southeast by the Cultural Center.

This past summer the road around Olin up to the coop has been relocated closer to the Saperstein/Human Resources and ALANA buildings in preparation for the Ho center construction expected to begin fall 2005. Two years of successful construction should enable Barr & Barr Construction to complete the nearly 120,000 square foot building. The vacated Lathrop will then need some renovation in addition to removal of the old Geology and Physics laboratory facilities and equipment. Who the future residents in Lathrop will be is yet to be determined. The bottom floor of Persson Hall, where the Geography department now lives, is likely to be immediately refilled by the overcrowded Economics and Political Science departments living just above.

On a more personal note, my Venice publication activities continue slowly and my name appears respectfully on some Antarctic research publications driven by Amy Leventer and her productive colleagues deriving interesting climate relationships from the piston core samples collected during our East Antarctic Margin cruise of 2001. My lung cancer and treatments remain active but not so much as to prevent me from teaching nice seminar-sized sections of Coastal and Marine Geology over the last couple of years. I do suggest that you keep smiling and avoid smoking, asbestos dust, and radon gas. Even if I did not so expose my lungs, they are the three recognized and dominant lung cancer inducing environmental factors.

William Peck

Hello from Hamilton! The last two years have been pretty busy for me and for Myongsun, who still manages the GIS lab in Persson Hall. In October we finally took the plunge and bought a house just south of town on Route 12B. It was built by the sister and brother-in-law of James Olmstead, who built the Founder's House on the corner of Preston Hill Road. Being homeowners has been a crash-course in septic systems, old wiring, and groundhogs. Luckily for us, the department is well equipped with experience in old houses.

Until this summer I've taught a mapping project in the Canada Lake area of the Adirondacks for the Off-Campus, once each with Dave Baird, Art Goldstein, and Allen Dennis (Colgate '82). For a change of scenery this summer I taught my OC leg in Colorado's Golden Gate Canyon Park with Amy Leventer. The students mapped a plunging synform and mylonite zone in a beautiful alpine setting at 8,000 feet. Back in Hamilton I've been teaching Petrology, Megageology, and Environmental Economic Geology. In Petrology I've revived the Chief's field trip down to Dutchess County to look at the Taconic Barrovian Sequence, and in Environmental Economic Geology we go down to New Jersey to look at the Franklin-Sterling Zinc district. Since I've been at Colgate I've continued my research on metamorphism in the
Adirondacks and Grenville Province of Quebec. In 2002 I started a new project in the New Jersey Highlands, an extension of Grenville rocks in Sussex county. A number of students have been involved in projects in New Jersey: Bret Doverspike ('03) and Adam Mansur ('05) looked at historic iron mines and Mike Meredith ('03) worked on the metamorphic history of these rocks. While looking at marbles just to the north in Orange County Erika Rader ('07) discovered an occurrence of the blue mineral serendibite (Ca2(Mg,Al)6(Si,Al,B)6O20), which we think is the thirteenth locality known worldwide.

The other exciting research-related event is the installation of a stable isotope mass spectrometer in September 2003 in Lathrop 165 (the old Sediments Lab). This instrument can measure the isotope ratio of light elements like oxygen, carbon, nitrogen, and sulfur. This summer there are four students working on this instrument on different research projects, which is hectic but fun.

Paul Pinet

As the years drop away, I'm astonished at how richer they seem to become the older I get. Learning by reading, teaching, and writing remains central to my life. Lately, I've immersed myself in Colgate's Core Program, specifically the "Challenge of Modernity," "Ecology, Ethics, and Wilderness" (a science core perspective), "Technology and the Human Prospect" (a Core Distinction course), and a First-Year Seminar course "Landsapes and Longing." Each time I teach them, I vary their focus, themes, readings, and pedagogy. Not surprisingly this mixture imparts forbearance and teaches me mostly about what I'm unable to comprehend, and that reality is what now informs much of my teaching and writing. Values, I keep learning, deserve as much attention as science. Two years ago, I started painting landscapes in watercolor, striving to express with color, form, and texture the essence of wildness infused deeply into me by my experiences as an educator, geologist, mountaineer, self-taught philosopher, and dreamer. The process of painting, I've discovered, helps me address an age-old concern, "What do landscapes have to say about me?" When and where appropriate, I use some of these painting in classes and public lectures to help reveal a deeper aspect of a landscape's meaning than can be expressed by language alone.

For the past five years I've been writing a bunch of essays dealing with the Earth and human presence. The current working title of the book is Living in Deep Time: Essays on Wildness. Paradoxically, this has turned out to be the most difficult and yet the most gratifying kind of scholarship that I have ever attempted. Each of the essays endeavors to examine human presence against an incomprehensibly deep past and deep future, an apt subject for a geologist. A few essay titles - "The philosophy of mountains," "the natural history of the soul," "The randomness of true harmony," "What am I?" - perhaps reveal the book's perspective. I've completed ten essays and am working on four more, and about to begin the onerous task of searching for a publisher.

During the past two years, a number of alumni have visited Hamilton, and I've enjoyed sharing their life stores. These visits remind me how rich life can be for people open to new experiences, which always revitalizes me. And for that gift I'm very grateful.
As noted in my welcoming comments, I have been in the department chair seat for the last two years and I hope that this will be my last for a while. Charlie McClennen stepped in for me during my sabbatical leave during the spring term when Nancy and I traveled to New Zealand and Australia from late January to mid-April. We had a wonderful two weeks on South Island and I was fortunate to collect a series of biogenic carbonate samples that included modern brachiopods which will be used for analytical work in my Marine Environments course this fall. While in Australia we were based at University of Wollongong where the School of Earth and Environmental Sciences graciously provided office space. I have been working on a project studying the petrology and stable isotope systematics of a somewhat unusual mineral pseudomorph - glendonite - which is derived from recrystallized ikaite, a hydrous carbonate mineral that precipitates from water at temperatures below 4°C. Glendonites were first described in sediments from the Sydney Basin so Wollongong is a natural place to study these occurrences. Two colleagues from UOW are collaborators on the project and we have presented some data already, and hope to publish a review article later this year. Our time in Australia also permitted a visit to Tasmania where I examined spectacular Permian glacigenic sediments and Miocene marine shoreline facies. Our final stop was Western Australia which included a week-long trek to Shark Bay, the mecca of all carbonate sedimentologists.

My other research projects include work with Jim McLelland on the geochronology of Adirondack intrusive rocks and the late tectonic evolution of the Grenville orogen. I plan to continue field work in the Adirondacks over the next few years. William Peck, Art Goldstein and I are well underway with a project studying the fluid history of low-grade metamorphic systems using stable isotopic and fluid inclusion techniques on rocks from the Taconics, the Pyrenees and the Alps. We have a number of students involved in this work, which is funded by NSF. Another Project involves study of the fluid movement along an ancient fault system in the basement rocks of the Adirondack Lowlands and the injection of those fluids into the Paleozoic cover. This process leads to important hydrocarbon reservoirs in the subsurface of the Appalachian Basin, and the Adirondack Lowlands example provides a great opportunity to see these systems exposed at the surface.

On the teaching front, I continue to teach Sedimentation and Stratigraphy, Hydrology and Surficial Geology, Hydrogeology and Marine Environments. I have introduced the use of Geographic Information Systems software tools in the 'Hydro' course, and use those tools myself in my research with students. I also teach in the 'OC' program every summer - this summer I did the leg that included Crown Point, where the weather was the best ever (some of you may remember that it always rains when I go there!) I hope that I can get back to more introductory level teaching when my term as chair expires this year, as I really enjoy Geology 101.
In summer ’04, support from NSF and Colgate, including the department’s Boyce Fund, made it possible to visit Bayan Zag (“Flaming Cliffs”) in the Gobi Desert where Colgate's dinosaur egg was discovered in 1923. It's an amazing place where red sandstones form an impressive escarpment sculpted into stunning buttes and pillars. Having a chance to explore the area where our Oviraptor egg made history, not just for Colgate but also for paleontology, added an emotional element to walking in Roy Chapman Andrews' footsteps 90 years after his famous expeditions. Even though dinosaur eggs yield extraordinary paleontological insights, the factors that favored their burial and fossilization (taphonomy) are largely unknown. Future experiments with Colgate students will be designed with Bayan Zag paleoenvironments in mind to improve an understanding of dinosaur egg taphonomy.

My NSF grant also enabled me last summer to investigate a new field area in central Siberia with Russian colleagues. We share ongoing interests in uncovering the geologic relationship that may have existed between rocks exposed in northern North America (Alaska), Northern Europe (Ural Mountains), Siberia (Salair), and Asia (Mongolia) - continents that were isolated from each other by ocean basins in the Paleozoic. Future research should show if the fossils we collected explain what caused the mass extinction of oceanic life that brought the Silurian period to a catastrophic close.

In Fall 2005, I'll be teaching my Core Distinction course on "Darwin and the Victorian Age of Discovery" while directing Colgate's study group to the University of Manchester, England. We'll scour the Yorkshire coast for Jurassic fossils, visit natural history museums in Whitby and London, pay our respects at Darwin's grave in Westminster Abbey, and tour the Darwin family estate in Kent.

In the past year, it's been terrific to hear excellent talks given at Colgate or at geology conferences by Doug Crowe '80, David Goldsmith '93, Katrina Gobetz '94, Dave Sunderlin '99, Emily Hirshorn '01, and Christy Visaggi '02. Thanks for staying in touch and I look forward to seeing everyone on upcoming trips to Hamilton!

Happenings

Martin Wong is Appointed to Visiting Faculty Position

Martin Wong joined our department this fall as a temporary hire in Structural Geology. Martin is a broadly trained geologist interested in addressing structural geology and tectonic problems using a combination of field-based studies and a variety of geochronologic and thermochronologic methods with an emphasis on 40Ar/39Ar geochronology. He recently completed his Ph.D. at the University of California, Santa Barbara working with Phil Gans.
Martin is largely interested in extensional tectonic settings and understanding how and why the crust extends. His dissertation focused on unraveling the extensional history in a region of northwestern Mexico. Specifically, this research focused on the Sierra Mazatan metamorphic core complex, a site of large-magnitude crustal extension that has exhumed mid-crustal rocks to the surface. Martin used a combination of geologic mapping, structural analyses, geochronology and thermochronology to determine the exact timing, magnitude, rate, and style of extension in this part of northwestern Mexico. This work suggests that extension in much of northwestern Mexico was of greater magnitude and occurred earlier than was previously known. Ultimately, these results will contribute to understanding the forces that drove the crust to pull apart both locally in northwestern Mexico as well as within the North American Basin and Range province as a whole.

Dorothy Gunther Retires

Dorothy Gunther retired on January 7th after thirty years of service to Colgate as a custodian in Lathrop Hall. As many of you may remember, Dorothy truly was a member of the geology department, taking care of her Lathrop 'family' and impressing students and faculty alike with her cheerful approach to every task. In appreciation of all her efforts, the Physics/Astronomy and Geology departments honored Dorothy with a surprise retirement reception in early December 2004 that was attended by approximately fifty people, including students, faculty (both current and emeritus), her Buildings and Grounds supervisors, and members of her family. After a few words of thanks and some amusing stories by Bruce Selleck and Anthony Aveni, Dorothy was presented with an engraved Colgate rocking chair, a plaque, and a book of compiled memories and well wishes from past and present students and faculty. Everyone then was invited upstairs for refreshments and cake. The book of memories really touched Dorothy's heart, so we'd like to extend a great thanks to all of you who contributed.

Pictures from the event (clockwise from top left: 1) Bruce & Dorothy, 2) Rich, Joe Amato & Bruce, 3) Dave Linsley, Paul & Jim Lloyd, 4) Dorothy & Charlie, 5) Jodi, Dorothy & Di, 6) William, Amy and students)
Colgate Geology Connections Down Under

Connections between Colgate's Geology Department and Australia and New Zealand continue to provide great opportunities for students and faculty. Colgate's Wollongong Study Groups have been led by geology department faculty Jim McLelland, Charlie McClennen, Bruce Selleck ad Paul Pinet, and William Peck will lead a group in the spring of 2007. A number of recent geology majors have participated in the study groups. Students from Colgate have engaged in joint research with faculty at the University of Wollongong's School of Earth and Environmental Sciences, and students from Wollongong have engaged in research with faculty here at Colgate. This summer two students from Wollongong, David Wesley and Narelle Simpson, supported by funding from a Colgate Mellon Foundation Grant, traveled to the western US with the Geology Department's summer field program. Liz Rampe ('05) and Linda Chernak ('05) recently received Honors in Geology based on research projects begun while in Australia, and Jason Kaplan ('06) worked on analyses of contact metamorphic rock collected during his study group visit to Wollongong during the spring of 2005. Recent faculty research exchanges to University of Wollongong have included Rich April and Bruce Selleck. Paul Carr and Nicholas Gill of Wollongong's School of Earth and Environmental Sciences have spent research leaves at Colgate in the last two years.

"The academic exchange between Colgate and Wollongong has been very productive for both students and faculty. The opportunity to engage our colleagues for extended periods of time has led to a number of innovative research projects, and new approaches to teaching. For students, going on an international study group is a wonderful learning opportunity, but when it is coupled with real research that is specific to that place, the experience is all the more meaningful." (Bruce Selleck)

Colgate geology faculty and student research abroad has also included New Zealand. In January 2005, Art Goldstein of the Geology Department, along with colleague Keith Klepeis (University of Vermont; CU '82) and Colgate student Darren Karn ('05) visited South Island, NZ to study the evolution of the Alpine Fault, site of one of the earth's highest rates of tectonic uplift. Shortly thereafter, Bruce Selleck visited South Island to study sediments accumulating on the south coast near Dunedin. On arrival Selleck crossed paths, completely by chance, with Karen Harpp in airport customs in Christchurch, NZ, as Harpp was returning from a research excursion to Antarctica. Christchurch is the home of the New Zealand Antarctic Center and has also served as a departure point for scientific expeditions carrying Amy Leventer (Colgate Geology department) and her students studying the sedimentary record of glacier and ice-shelf melting on the Antarctic coast.
Art Goldstein Takes New Post at National Science Foundation

Art Goldstein, the department's structural geologist since 1982, has taken up a leadership position at the National Science Foundation's Division of Earth Science. His new position as Section Head of Earth Surface Processes, involves Art in a range of policy and personnel matters at NSF. He had recently (2002-2003) served as a program director in Tectonics while in a rotator position which brings academic faculty to NSF for one or two-year stints. Art and Melanie are happily ensconced in Alexandria and enjoying life inside the beltway.

Contributions to Geology

We all want to thank those who have donated to the geology department over the last three years. If you are planning to give money to Colgate, you can specify that your contribution go directly to the Geology Department. The department's discretionary fund pays for the publication and distribution of this newsletter and other departmental projects. If you wish, you can specify that your donation goes into one of our endowed funds for students: The Norma Vergo Fund or the Bob Linsley/James McLelland Fund. The following have contributed to the department since the last newsletter (our sincere apologies if we have missed anyone!).

Jay Ach
Jay A. Barr
Ezra R. Benjamin
Linda Besse
Malcolm W. Boyce
Chapin L. Brackett
Gary J. Braham
Barbara Stowell Burgeson
Emily W. Constantine
Pamela Tiezzi Darwin
Laurie DeArmond
Dr. Allen J. Dennis III
Scott M. DeTraglia
Michael E. Echt
Richard J. Fahey
Kellie M. Flavin
Jason M. Francis
Daniel J. Gaudiano
Lee M. Gray
Adam J. Greenhut
David E. Haymes
Catherine M. Healy
Dr. Bruce E. Herbert
John W. Hoffman
James T. Hutton
Gerald J. Jasko
Robert Linsley
Lynn Feucht Malloy
Krista Kantes Maye
Susan McCarthy McCotter
Ellen L. Mecray
Harlan F. Moonen
Laura Jean Moore
Rebecca C. Newhall
Holly Hoyt Posner
Patrick C. Ramsey
Daniel E. Riker
Shannon Jones Ritter
Nathan A. Rollins
S. Andrew Sandberg
Samuel M. Savin
Ronald C. Schott
Dr. Bruce W. Selleck
Julia K. Shackford
Catherine H. Shrady
Michael R. Snyder
Walter S. Steinmann Jr.
David F. Sunderlin
William J. Sweeney III
Bethany M. Tietz
Wendy Meyer Trimble
L. Karl Van Keuren III
The Norma Vergo Fund

The Norma Vergo Fund is used to give a prize to an outstanding graduating senior who significantly contributes to the spirit of excellence among fellow students. Past contributors include:

Stephen P. Altaner
Amy M. Baldwin-Gove
Ed Cazier
Conoco, Inc.
Pamela Tiezzi Darwin
David E. Haymes
Raymond W. Mitchell
Susanna L. Mitchell
Mobil Foundation, Inc.
Ronald L. Parker
Andrew S. Sandberg
Bruce W. Selleck
Nancy B. Selleck
Michael R. Snyder
Charles A. Weiss
Roger C. Wiggin
Robert F. Ylagan

The Robert Linsley / James McLelland Endowment

The Robert Linsley/James McLelland Endowment was established upon the retirement of Bob Linsley, Harold Orville Whitnall Professor of Geology, and the subsequent retirement of Jim McLelland (a.k.a. "The Chief"), Charles A. Dana Professor of Geology. This endowment is used to fund a deserving student for summer research. Past contributors include:

Jay A. Ach
Ronald P. Bertasi
Craig M. Butterworth
William J. Clarke
Daniel M. Covello
Douglas H. Erwin
Exxon Education Foundation
Lee M. Gray
David E. Haymes
J. Christopher Hepburn
John W. Hoffman
John R. Hopper
James T. Hutton
Susan Corkran Hutton
Jeannette Husain Holly
Ronald G. Holly
William M. Kier
Karen L. Kleinspehn
Robert S. Kuhlman
David N. Lambert
Charles F. Mason
Lawrence T. Molloy
Bruce C. Panuska
Ronald L. Parker
Ronald C. Schott
Bruce W. Selleck
Pamela McGowan Whiting
Timothy Whiting
Abby L. Yochelson
Robert M. York